
Smart
Inf

er

Inference-Time Compute Scaling in Large Language Models
A First-Principles Algorithmic and Complexity-Theoretic Survey

Anjan Goswami
General Manager, SmartInfer.com

January 2026

Abstract: This survey provides a rigorous theoretical treatment of inference-time compute scaling in large language models.
We establish formal computational models for transformers under various precision regimes, characterize their expressivity
through circuit complexity, and analyze how chain-of-thought reasoning extends computational power from TC0 to P.
The survey presents exact theorem statements with proof sketches for the key results: Merrill & Sabharwal’s complexity
characterization showing TIME(t(n)) ⊆ CoT(t(n)) ⊆ SPACE(t(n) + log n), and Li et al.’s circuit simulation theorem
proving SIZE[T (n)] ⊆ CoT[T (n), log n, 1]. We develop a formal taxonomy of inference-time algorithms—including
self-consistency, tree-of-thought, and Monte Carlo tree search—with complexity analysis for each. The survey further
examines scaling laws, the generation-verification gap, and fundamental impossibility results. We conclude with a hierarchy
of open problems ranked by tractability and impact, aimed at guiding future theoretical research in this rapidly evolving field.

Smart
Inf

er

Inference-Time Compute Scaling: A Theoretical Survey Anjan Goswami

Contents

1 Introduction 1
1.1 Motivation and Scope . 1
1.2 Contributions and Organization . 1
1.3 Related Surveys . 1
1.4 Notation and Terminology . 1

2 Computational Model 2
2.1 Transformer Architecture: Formal Definition . 2
2.2 Precision Regimes . 3
2.3 Attention Semantics . 3
2.4 Chain-of-Thought as Computation . 4
2.5 Architectural Variants . 4

3 Complexity-Theoretic Foundations 5
3.1 The TC0 Barrier Without Chain-of-Thought . 5
3.2 The Merrill-Sabharwal Characterization . 5
3.3 Proof Technique: The Layer-Norm Hash . 6
3.4 The Li et al. Circuit Simulation . 6
3.5 Inherently Serial Problems . 6
3.6 Impossibility Results and Lower Bounds . 7

3.6.1 Communication Complexity Barriers . 7
3.6.2 Sensitivity and PARITY . 7
3.6.3 The Globality Barrier . 7

3.7 Summary of Complexity Landscape . 7

4 Algorithmic Taxonomy 8
4.1 Chain-of-Thought: Sequential Deepening . 8
4.2 Self-Consistency: Parallel Sampling with Marginalization . 8
4.3 Best-of-N with Verifiers . 9
4.4 Tree-of-Thoughts: Structured Search . 10
4.5 Monte Carlo Tree Search . 10
4.6 Comparative Analysis . 11

5 Scaling Laws 12
5.1 Empirical Scaling Observations . 12
5.2 Functional Forms of Scaling Laws . 12
5.3 Provable Scaling Laws . 13

5.3.1 The Knockout Algorithm . 13
5.3.2 The League Algorithm . 14

5.4 Failure Modes and Limitations . 14
5.5 Compute-Optimal Allocation . 15
5.6 Relationship to Pretraining Scaling Laws . 15

6 Verification Theory 15
6.1 The Generation-Verification Gap . 15
6.2 Verifier Taxonomy . 16
6.3 Process vs. Outcome Reward Models . 16
6.4 Self-Correction: Theoretical Limits . 17
6.5 Verification Complexity . 17
6.6 Ensemble Verification . 18
6.7 Theoretical Framework for Self-Improvement . 18
6.8 Summary: Verification as the Limiting Factor . 18

2

Smart
Inf

er

Inference-Time Compute Scaling: A Theoretical Survey Anjan Goswami

7 Search-Theoretic Foundations 19
7.1 Search Space Formalization . 19
7.2 Exploration-Exploitation Tradeoff . 19
7.3 Heuristic Quality and Admissibility . 19
7.4 A* Search and Its LLM Variants . 20
7.5 Beam Search Analysis . 20
7.6 Search Algorithm Comparison . 21
7.7 Sample Complexity of Search . 21
7.8 The Search-Verification Tradeoff . 21

8 Training-Inference Tradeoffs 22
8.1 The Compute Allocation Problem . 22
8.2 Distillation of Reasoning . 22
8.3 Adaptive Distillation . 23
8.4 Reinforcement Learning for Reasoning . 23
8.5 Inference-Aware Training . 23
8.6 The Distillation-RL Spectrum . 23
8.7 Theoretical Limits of Distillation . 24

9 Open Problems 24
9.1 High Tractability, High Impact . 24
9.2 Medium Tractability, High Impact . 24
9.3 Low Tractability, High Impact . 25
9.4 Foundational Questions . 25
9.5 Research Directions . 25

10 Conclusion 26
10.1 Summary of Theoretical Contributions . 26
10.2 Practical Implications . 26
10.3 The Road Ahead . 27

A Detailed Proofs 27
A.1 Proof of the CoT Hierarchy Theorem . 27
A.2 Proof of the Merrill-Sabharwal Characterization (Theorem 3.4) . 27
A.3 Proof of Theorem 5.8: Knockout Exponential Scaling . 28
A.4 Proof of Proposition 4.3: Self-Consistency Success Probability . 28
A.5 Proof of Theorem 4.6: Best-of-N with Imperfect Verifier . 29

B Extended Complexity Analysis 29
B.1 Detailed CoT Complexity Bounds . 29
B.2 Attention Complexity . 29

C Additional Algorithms 30
C.1 Weighted Majority with Confidence . 30
C.2 Iterative Refinement with Verification . 30

D Empirical Scaling Data 30
D.1 Benchmark Results Summary . 30

E Worked Examples 31
E.1 Example: Self-Consistency on Arithmetic . 31
E.2 Example: Best-of-N with Verifier . 31
E.3 Example: Knockout Tournament . 32
E.4 Example: MCTS for Mathematical Reasoning . 32

3

Smart
Inf

er

Inference-Time Compute Scaling: A Theoretical Survey Anjan Goswami

F Implementation Considerations 33
F.1 Efficient Parallel Sampling . 33
F.2 Caching Strategies for Tree Search . 33
F.3 Verifier Deployment . 33

A Detailed Proofs 33
A.1 Proof of Theorem ?? (Merrill-Sabharwal Characterization) . 33
A.2 Proof of Theorem ?? (CoT Complexity Hierarchy) . 34
A.3 Proof of Theorem ?? (Self-Consistency Success Probability) . 35
A.4 Proof of Theorem ?? (Best-of-N with Imperfect Verifier) . 35
A.5 Proof of Theorem 5.8 (Knockout Exponential Scaling) . 36
A.6 Proof of Theorem 6.8 (Self-Correction Impossibility) . 36

B Extended Algorithm Descriptions 37
B.1 Complete MCTS for LLM Reasoning . 38
B.2 Diverse Beam Search . 39

C Complexity Class Definitions 39

4

Smart
Inf

er

Inference-Time Compute Scaling: A Theoretical Survey Anjan Goswami

1. Introduction
The emergence of inference-time compute scaling represents a paradigm shift in our understanding of large language
model capabilities. Rather than viewing model performance as fixed at deployment, recent theoretical and empirical work
demonstrates that test-time computation acts as a tradeable resource—performance can be systematically improved by
allocating additional inference-time FLOPs through mechanisms such as chain-of-thought reasoning, parallel sampling, and
guided search.

This survey provides a first-principles theoretical treatment of inference-time scaling, emphasizing algorithmic foundations
and complexity-theoretic analysis. Our goal is to move beyond empirical observations to establish rigorous characterizations:
What computational problems become solvable with additional inference steps? What are the fundamental limits? When
does test-time compute substitute for model parameters, and when does it fail?

1.1 Motivation and Scope
The practical importance of inference-time scaling is now well-established. OpenAI’s o1 and o3 models, DeepSeek-R1, and
Anthropic’s extended thinking demonstrate that “reasoning models” with extended inference achieve state-of-the-art results
on mathematical olympiad problems, competitive programming, and scientific reasoning tasks. These systems use 10-100×
more inference compute than standard models, raising fundamental questions about the nature of this tradeoff.

From a theoretical perspective, inference-time scaling touches core questions in computational complexity:

• Expressivity: What complexity classes can transformers recognize with varying amounts of chain-of-thought? The
answer—TC0 without CoT, P with polynomial CoT—provides the first exact characterization of transformer power in
standard complexity terms.

• Learnability vs. Expressivity: Can transformers learn to use CoT effectively, or does the gap between what they can
express and what they can learn constitute a fundamental barrier?

• Verification: Many inference-time methods rely on verifiers to guide search. When can a model verify its own outputs?
The connection to NP structure (generation-verification gaps) is deep and underexplored.

• Scaling Laws: Do principled functional forms govern the relationship between inference compute and performance? Can
we derive compute-optimal allocation strategies?

This survey addresses these questions with mathematical rigor, presenting theorem statements with explicit assumptions
and proof sketches for key results.

1.2 Contributions and Organization
The contributions of this survey are threefold:

1. Unified Computational Framework: We establish precise definitions for transformers as computational models,
clarifying the roles of precision, attention semantics, and architectural variants. This framework (Section 2) provides the
foundation for all subsequent complexity results.

2. Complexity-Theoretic Synthesis: We present a unified treatment of expressivity results (Section 3), showing how
chain-of-thought extends transformer power through the hierarchy TC0 → L → P. We include the key proof
techniques—layer-norm hashing and circuit simulation—that enable these characterizations.

3. Algorithmic Taxonomy with Complexity Analysis: We develop a formal taxonomy of inference-time methods (Sec-
tion 4), analyzing time complexity, space complexity, and approximation guarantees for each class.

The survey continues with scaling laws and compute-optimal analysis (Section 5), verification theory and the generation-
verification gap (Section 6), search-theoretic foundations (Section 7), training-inference tradeoffs (Section 8), open problems
(Section 9), and conclusions (Section 10).

1.3 Related Surveys
Several surveys address adjacent topics. Merrill’s “What Formal Languages Can Transformers Express?” (TACL 2024)
provides comprehensive coverage of transformer expressivity without inference-time focus. The empirical surveys on
chain-of-thought prompting document practical techniques but lack theoretical grounding. To our knowledge, this is the first
survey providing a unified complexity-theoretic treatment of inference-time compute scaling.

1.4 Notation and Terminology
Throughout this survey, we use the following notation consistently:

1

Smart
Inf

er

Inference-Time Compute Scaling: A Theoretical Survey Anjan Goswami

Table 1: Notation Reference

Symbol Meaning

Models and Computation
M Language model
T Transformer architecture
n Input length
d Model dimension
L Number of layers
H Number of attention heads
|Σ| or |V | Vocabulary size

Chain-of-Thought
T Number of CoT steps/tokens
CoT(T) Class of problems solvable with T CoT steps
y1:T Sequence of CoT tokens

Sampling and Search
N Number of samples/candidates
K Number of comparisons (in knockout)
b Branching factor
d Search depth

Probabilities
pgen Probability of generating correct solution
pver Probability of correct verification
pwin Probability correct beats incorrect in comparison
TPR, FPR True/False positive rates

Complexity Classes
TC00 Constant-depth threshold circuits
NC1 Log-depth, polynomial-size circuits
L Log-space computable functions
P Polynomial-time computable functions

Compute
Cfwd Forward pass compute
Cgen Generation compute
Cver Verification compute
FLOPs Floating point operations

Terminology. We use “inference-time compute,” “test-time compute,” and “inference scaling” interchangeably to refer to
computational resources expended during model inference (as opposed to training). “Chain-of-thought” (CoT) refers to any
intermediate reasoning tokens generated before the final answer, whether prompted or emergent.

2. Computational Model
We begin by establishing the formal computational model for transformers. The choice of precision regime and attention
semantics critically determines expressive power, and conflating different formalizations leads to confusion in the literature.
This section provides precise definitions that underpin all subsequent results.

2.1 Transformer Architecture: Formal Definition
We adopt the formalization of Merrill et al. (2022), which captures decoder-only autoregressive transformers with sufficient
generality for complexity analysis.

Definition 2.1 (Transformer). A transformer is a tuple T = ⟨Σ,D, α, L,H, ϕ, {sℓ,h}, {fℓ}⟩ where:

2

Smart
Inf

er

Inference-Time Compute Scaling: A Theoretical Survey Anjan Goswami

• Σ is a finite input alphabet
• D is a scalar datatype (floating-point F or rationals Q)
• α : Dn → ∆n is an attention function mapping scores to a probability distribution
• L ∈ N is the number of layers
• H ∈ N is the number of attention heads per layer
• ϕ : Σ× N→ Dm is a position-aware embedding function
• sℓ,h : Dm × Dm → D computes attention scores for layer ℓ, head h
• fℓ : (Dm)H+1 → Dm is the feedforward function for layer ℓ

The computation proceeds as follows. Given input x = x1 · · ·xn ∈ Σn:

1. Embedding: Compute initial representations v(0)i = ϕ(xi, i) for i ∈ [n].
2. Attention: For each layer ℓ ∈ [L] and head h ∈ [H], compute:

aℓ,h,i = α
(
sℓ,h(v

(ℓ−1)
i , v

(ℓ−1)
1), . . . , sℓ,h(v

(ℓ−1)
i , v(ℓ−1)

n)
)

(1)

uℓ,h,i =

n∑
j=1

[aℓ,h,i]j · v(ℓ−1)
j (2)

3. Feedforward: Update representations:

v
(ℓ)
i = fℓ(v

(ℓ−1)
i , uℓ,1,i, . . . , uℓ,H,i) (3)

4. Output: The final representation v(L)
n determines the output.

For decoder-only models with causal masking, position i can only attend to positions j ≤ i, enforced by setting
sℓ,h(vi, vj) = −∞ for j > i.

2.2 Precision Regimes
The precision of numerical representations fundamentally constrains transformer expressivity. We distinguish three regimes:

Definition 2.2 (p-Precision Floating Point). A p-precision float is a tuple ⟨m, e⟩ where the mantissa m and exponent e are
signed integers using p bits total. The represented value is m · 2e−|m|+1.

Definition 2.3 (Log-Precision Transformer). A transformer has log-precision if its numerical precision satisfies p = O(log n)
for inputs of length n. This is the minimal precision sufficient to:

• Represent position indices i ∈ [n]
• Compute uniform attention weights 1/n
• Accumulate sums over n positions without overflow

Definition 2.4 (Constant-Precision Transformer). A transformer has constant precision if p = O(1) independent of input
length.

The distinction is crucial: log-precision transformers can implement counting and position-dependent operations, while
constant-precision transformers cannot reliably distinguish positions in long sequences.

2.3 Attention Semantics
The attention function α admits several formalizations with different computational properties:

Definition 2.5 (Softmax Attention). Standard softmax attention computes:

[αsoft(s)]i =
exp(si)∑n
j=1 exp(sj)

(4)

Definition 2.6 (Saturated (Average-Hard) Attention). Saturated attention assigns uniform weight to all maximum-score
positions:

[αsat(s)]i =
1[i ∈M(s)]

|M(s)|
(5)

where M(s) = {i : si = maxj sj} is the set of positions achieving the maximum score.

3

Sm
ar

tIn
fer

Inference-Time Compute Scaling: A Theoretical Survey Anjan Goswami

Definition 2.7 (Leftmost-Hard Attention). Leftmost-hard attention selects only the leftmost maximum:

[αleft(s)]i = 1[i = minM(s)] (6)

Saturated attention arises as the limit of softmax attention as temperature approaches zero when ties exist. It is the
standard idealization for complexity analysis because it admits clean circuit simulations.

Theorem 2.8 (Attention Hierarchy, Merrill et al. 2022). For transformer language recognition:

Hard Attention ⊊ Saturated Attention ⊆ TC0 (7)

Specifically, hard attention transformers are contained in AC0, while saturated attention transformers can compute threshold
functions and thus reach TC0.

2.4 Chain-of-Thought as Computation
We now formalize chain-of-thought as an extension of the transformer computational model.

Definition 2.9 (Autoregressive Generation). Given a transformer T and input x ∈ Σn, autoregressive generation proceeds:

1. Initialize context c0 = x
2. For t = 1, 2, . . .:

(a) Compute T (ct−1) to obtain distribution over next token
(b) Sample or select yt ∈ Σ
(c) Update ct = ct−1 · yt (concatenation)

3. Terminate when stop condition is met

Definition 2.10 (Chain-of-Thought Complexity Class). For functions T, d, s, e : N→ N, define CoT[T (n), d(n), s(n), e(n)]
as the class of languages L ⊆ Σ∗ such that there exists a constant-depth transformer with:

• Embedding dimension d(n)
• Mantissa precision s(n) bits
• Exponent precision e(n) bits

that on input x ∈ Σn, generates at most T (n) tokens, with the final token indicating acceptance/rejection.
When parameters are clear from context, we write CoT(T (n)) for the class with T (n) chain-of-thought steps.

This definition captures the key insight: each generated token adds one “step” of computation, transforming the bounded-
depth transformer into an unbounded-time computational model.

2.5 Architectural Variants
Several architectural details affect theoretical results:

Definition 2.11 (Pre-Norm vs. Post-Norm). In post-norm transformers, layer normalization is applied after the residual
connection:

v(ℓ) = LayerNorm(v(ℓ−1) + Sublayer(v(ℓ−1))) (8)

In pre-norm transformers, normalization precedes the sublayer:

v(ℓ) = v(ℓ−1) + Sublayer(LayerNorm(v(ℓ−1))) (9)

Definition 2.12 (Projected Pre-Norm). A transformer uses projected pre-norm if each sublayer can apply layer normalization
to a linear projection of its input:

proj layer norm(v;M) = LayerNorm(Mv) (10)

for learnable projection matrices M .

The projected pre-norm condition is required for the strongest expressivity results (Theorem 3.4), as it enables the
layer-norm hash construction for dynamic memory access.

4

Smart
Inf

er

Inference-Time Compute Scaling: A Theoretical Survey Anjan Goswami

3. Complexity-Theoretic Foundations
We now present the central complexity-theoretic results characterizing transformer expressivity with and without chain-of-
thought. These results establish that CoT steps act as a fundamental computational resource, enabling a precise hierarchy
from TC0 to P.

3.1 The TC0 Barrier Without Chain-of-Thought
The foundational negative result establishes that transformers without intermediate generation are severely limited:

Theorem 3.1 (Log-Precision Upper Bound, Merrill & Sabharwal 2023). Transformers with O(log n)-precision arithmetic
can be simulated by constant-depth logspace-uniform threshold circuits. Formally:

T[poly(n), log n, log n] ⊆ L-uniform TC0 (11)

where T[d, s, e] denotes transformers with embedding dimension d, s-bit mantissa, and e-bit exponent.

Proof Sketch. Each transformer layer computes a function expressible as a constant-depth circuit with threshold gates. The
attention mechanism computes weighted sums (threshold-computable), and feedforward networks with ReLU activations
implement piecewise-linear functions (also threshold-computable). Composing O(1) layers yields a constant-depth threshold
circuit. Log-space uniformity follows from the fact that circuit descriptions can be computed in log-space given the layer
structure.

This upper bound has immediate consequences for what transformers cannot compute:

Corollary 3.2 (Impossibility Results). Unless complexity-theoretic separations fail, log-precision transformers without CoT
cannot:

1. Recognize all regular languages (since TC0 ̸⊇ REG unless TC0 = NC1)
2. Solve directed graph connectivity (NL-complete)
3. Evaluate Boolean formulas (NC1-complete)
4. Compute iterated multiplication (NC1-complete)

Li et al. (2024) refine the bounds for different precision regimes:

Theorem 3.3 (Precision-Dependent Bounds, Li et al. 2024). 1. T[poly(n), O(1), O(1)] ⊆ AC0. Constant-precision trans-
formers with constant exponent bits cannot compute PARITY.

2. T[poly(n), log n,O(1)] ⊆ TC0. Log-precision with fixed-point arithmetic remains in TC0.

3.2 The Merrill-Sabharwal Characterization
The central positive result shows that chain-of-thought steps precisely correspond to computational time:

Theorem 3.4 (Main Complexity Characterization, Merrill & Sabharwal 2024). For any time-constructible function t : N→
N:

TIME(t(n)) ⊆ CoT(t(n)) ⊆ SPACE(t(n) + log n) (12)

This yields tight characterizations at key thresholds:

Table 2: Complexity Classes Achievable with Chain-of-Thought

CoT Steps Lower Bound Upper Bound Notable Capabilities

0 TC0 TC0 Threshold functions only
O(log n) TIME(log n) L Limited sequential computation
O(n) TIME(n) SPACE(n) All regular languages
O(nk) P P Exact characterization

Corollary 3.5 (Polynomial CoT Equals P). CoT(poly(n)) = P. This is the first exact characterization of any transformer
class in terms of standard complexity classes.

5

Smart
Inf

er

Inference-Time Compute Scaling: A Theoretical Survey Anjan Goswami

3.3 Proof Technique: The Layer-Norm Hash
The proof of Theorem 3.4 relies on a novel construction for dynamic memory access within the attention mechanism.

Definition 3.6 (Layer-Norm Hash). For x, y ∈ R, define:

φ(x, y) ≜ LayerNorm(x, y,−x,−y) (13)

This produces a unit vector in R4. Define the position hash φx ≜ φ(x, 1).

Lemma 3.7 (Scale Invariance). For any x ∈ R and i > 0: φ(x/i, 1/i) = φx.

Lemma 3.8 (Equality Detection). For any q, k ∈ R: φq · φk = 1 if and only if q = k.

Proof. The layer-norm operation produces unit vectors. Two unit vectors have dot product 1 iff they are identical. The
construction ensures φq = φk iff q = k.

These lemmas enable attention to implement content-addressable memory. The Turing machine simulation proceeds as
follows:

1. Tape Representation: Store tape “diffs” at each step—each CoT token records (position, value, timestamp) for modified
cells.

2. Memory Retrieval: To read tape position h at time t:

• Use query ⟨φh, e1⟩
• Use keys ⟨φj ,−ψj⟩ where ψ is monotonically decreasing (recency tiebreaker)
• Attention retrieves the most recent write to position h

3. State Transition: The feedforward network implements the finite-state transition function.

Remark 3.9. The projected pre-norm condition (Definition 2.8) is essential—it allows computing φ on projections of the
input, enabling the selective retrieval needed for tape reconstruction.

3.4 The Li et al. Circuit Simulation
An alternative proof technique establishes a complementary result through direct circuit simulation:

Theorem 3.10 (Circuit Simulation, Li et al. 2024). For any polynomial T : N+ → N+:

SIZE[T (n)] ⊆ CoT[T (n), log n, 1] (14)

Consequently: P/poly = CoT[poly(n), log n, 1].

Proof Sketch. The construction simulates one Boolean gate per CoT step. The embedding stores four components:

1. Gate type: AND, OR, NOT, TRUE, FALSE
2. Two input gate IDs (integers in [T (n)])
3. Current gate ID

At each step:

1. Attention retrieves input gate values (previously computed or original inputs)
2. Feedforward network computes the gate’s Boolean operation
3. The output token becomes the input for the next step

The key insight: “Writing the output token back to the next input position resets the ‘depth’ of the intermediate output to
0.” This circumvents the constant-depth limitation by serializing computation through the autoregressive loop.

3.5 Inherently Serial Problems
The circuit simulation theorem motivates the study of inherently serial problems—those requiring sequential computation
and thus benefiting from CoT:

Definition 3.11 (Inherently Serial Problem). A problem is inherently serial if it lies in P (or NC1) but is conjectured outside
TC0.

6

Smart
Inf

er

Inference-Time Compute Scaling: A Theoretical Survey Anjan Goswami

Table 3: Inherently Serial Problems Solvable with CoT

Problem Complexity Required CoT

Permutation composition (S5) NC1-complete O(n)

Boolean formula evaluation NC1-complete O(n)
Circuit value problem P-complete poly(n)
Iterated squaring mod p Conjectured serial poly(n)

By Barrington’s theorem, if TC0 ⊊ NC1 (widely believed), then permutation composition over S5 is solvable with
linear CoT but not by any polynomial-size transformer without CoT.

3.6 Impossibility Results and Lower Bounds
Complementing the positive results, several lines of work establish fundamental limitations:

3.6.1 Communication Complexity Barriers

Sanford, Hsu, and Telgarsky (2023-2024) model self-attention as a communication protocol:

Theorem 3.12 (Induction Head Separation). One-layer transformers require exponentially larger size than two-layer
transformers to implement induction heads. The proof uses communication complexity lower bounds.

3.6.2 Sensitivity and PARITY

Theorem 3.13 (PARITY Hardness, Hahn & Rofin 2024). While PARITY ∈ TC0, parameter settings achieving high-
sensitivity functions (like parity) must inhabit steep, brittle minima. Close neighbors in parameter space define much less
sensitive functions, making parity-like computations difficult to learn.

3.6.3 The Globality Barrier

Abbe et al. (NeurIPS 2024) introduce a fundamental distinction between expressivity and learnability:

Definition 3.14 (Globality Degree). For distribution D on An ×A, the globality degree glob(D) is the smallest k such that
there exists S ⊆ [n] with |S| = k satisfying:

I(X[S], P̂X ;Y) = n−O(1) (15)

where (X,Y) ∼ D and P̂X is the empirical token histogram.

Theorem 3.15 (Globality Barrier, Abbe et al. 2024). For the cycle task (distinguishing two disjoint cycles from one
large cycle), trained with population gradient descent on T -regular transformers using polynomial hyperparameters and
differentiable loss, the network fails to weakly learn because glob(Cycle(n)) ≥ n.

This establishes that high-globality problems cannot be learned even if they are expressible—a fundamental expressivity-
learnability gap.

3.7 Summary of Complexity Landscape

Complexity Hierarchy for Transformers with Chain-of-Thought

TC0 ⊂ CoT(0) = TC0

⊂ CoT(O(log n)) ⊆ L

⊂ CoT(O(n)) ⊆ SPACE(n)

⊂ CoT(poly(n)) = P

⊂ CoT(exp(n)) ⊆ PSPACE

Key Insight: Each CoT step adds one unit of “time,” transforming bounded-depth parallel computation into
unbounded sequential computation.

Figure 1: The complexity hierarchy induced by chain-of-thought steps

7

Smart
Inf

er

Inference-Time Compute Scaling: A Theoretical Survey Anjan Goswami

4. Algorithmic Taxonomy
We now develop a formal taxonomy of inference-time compute methods, analyzing each algorithm class with respect to time
complexity, space complexity, and theoretical guarantees. The taxonomy organizes methods along two axes: sequential vs.
parallel generation, and flat vs. tree-structured exploration.

Table 4: Taxonomy of Inference-Time Compute Methods

Method Structure Selection Time Complexity

Chain-of-Thought Sequential Greedy O(T · Cfwd)
Self-Consistency Parallel Majority Vote O(N · T · Cfwd)
Best-of-N Parallel Verifier O(N · T · Cfwd +N · Cver)
Tree-of-Thought (BFS) Tree LLM Evaluation O(bd · Cfwd + bd · Ceval)
Tree-of-Thought (DFS) Tree LLM Evaluation O(b · d · Cfwd + b · d · Ceval)
MCTS (UCT) Tree UCB + Rollout O(Niter · (d · Cfwd + Crollout))

Here T denotes maximum generation length, N the number of samples, b the branching factor, d the tree depth, Cfwd the
cost of a forward pass, Cver the verifier cost, and Ceval the LLM self-evaluation cost.

4.1 Chain-of-Thought: Sequential Deepening
Chain-of-thought (CoT) prompting, introduced by Wei et al. (2022), represents the simplest form of inference-time scaling:
generate intermediate reasoning steps before producing the final answer.

Definition 4.1 (Chain-of-Thought Generation). Given prompt x and transformer T , CoT generation produces a sequence
y1, y2, . . . , yT where each yt is sampled from T (·|x, y1, . . . , yt−1). The final answer is extracted from yT or a designated
answer token.

Algorithm 1 Chain-of-Thought Generation

Require: Prompt x, transformer T , max length T , temperature τ
1: y ← ∅
2: for t = 1 to T do
3: p← T (·|x, y) ▷ Forward pass
4: yt ← Sample(p, τ) ▷ Temperature sampling
5: y ← y · yt
6: if yt = EOS then break
7: end if
8: end for
9: return ExtractAnswer(y)

Complexity Analysis.
• Time: O(T · Cfwd) where Cfwd = O(L · d2 · n) for transformer with L layers, dimension d, and context length n. With

KV-caching, incremental generation costs O(L · d2) per token.
• Space: O(T · d) for the KV-cache, plus O(L · d2) for model parameters.
• Context Window: CoT consumes |x|+ T tokens of context, limiting reasoning depth.

Theoretical Guarantees. By Theorem 3.4, T CoT steps enable recognition of TIME(T). The practical implication:
longer chains unlock harder problems, but with diminishing returns as context fills.

4.2 Self-Consistency: Parallel Sampling with Marginalization
Self-consistency (Wang et al., 2023) generates multiple independent reasoning paths and selects the answer by majority vote,
leveraging the intuition that correct answers admit multiple valid derivations.

8

Sm
ar

tIn
fer

Inference-Time Compute Scaling: A Theoretical Survey Anjan Goswami

Definition 4.2 (Self-Consistency). Given prompt x, sample N independent CoT traces {(y(i), a(i))}Ni=1 where a(i) =
ExtractAnswer(y(i)). Return:

â = argmax
a∈A

N∑
i=1

1[a(i) = a] (16)

Algorithm 2 Self-Consistency Decoding

Require: Prompt x, transformer T , sample count N , temperature τ > 0
1: votes← {} ▷ Answer→ count mapping
2: for i = 1 to N do ▷ Parallelizable
3: y(i) ← CoT(x, T , τ)
4: a(i) ← ExtractAnswer(y(i))
5: votes[a(i)]← votes[a(i)] + 1
6: end for
7: return argmaxa votes[a]

Complexity Analysis.
• Time: O(N · T · Cfwd) sequential, or O(T · Cfwd) with N -way parallelism.
• Space: O(N · T · d) to store all traces, or O(T · d) if answers are extracted online.

Theoretical Analysis. Let p be the probability that a single CoT trace yields the correct answer. Under independence:

Proposition 4.3 (Self-Consistency Success Probability). If each sample is correct independently with probability p > 0.5,
then the probability that majority voting returns the correct answer satisfies:

P (correct) ≥ 1− exp
(
−2N(p− 0.5)2

)
(17)

by Hoeffding’s inequality. For p > 0.5, this converges to 1 exponentially in N .

Remark 4.4 (Failure Mode). If p < 0.5—i.e., the model is more likely to produce incorrect answers—majority voting
amplifies errors. Chen et al. (2024) prove that self-consistency can converge to the wrong answer as N →∞ when incorrect
answers have higher generation probability than correct ones.

Empirical Scaling. Wang et al. report diminishing returns beyond N ≈ 40 samples, with most gains from N = 1 to
N = 5. This suggests a ceiling imposed by the base model’s coverage of valid reasoning paths.

4.3 Best-of-N with Verifiers
Best-of-N (BoN) sampling uses an external verifier (reward model) to select among candidate generations, decoupling
generation quality from selection quality.

Definition 4.5 (Best-of-N Sampling). Given prompt x, verifier V : Y → R, sample N responses {y(i)}Ni=1 and return:

ŷ = arg max
y∈{y(1),...,y(N)}

V (y) (18)

Verifier Types.
• Outcome Reward Models (ORMs): V (y) = r(y) scores the final answer only.
• Process Reward Models (PRMs): V (y) =

∑T
t=1 rt(y≤t) aggregates step-level rewards.

• Self-Verification: V (y) = T (“Is y correct?”|x, y) uses the LLM itself.

Complexity Analysis.
• Time: O(N · T · Cfwd +N · Cver). For learned verifiers, Cver ≈ Cfwd.
• Space: O(N · T) to store candidates for verification.

9

Smart
Inf

er

Inference-Time Compute Scaling: A Theoretical Survey Anjan Goswami

Theoretical Guarantees. Chen et al. (2024) establish:

Theorem 4.6 (BoN with Imperfect Verifier). Let pgen be the probability of generating a correct solution, and let the verifier
have true positive rate TPR and false positive rate FPR. Then BoN accuracy is characterized by the verifier’s ROC curve:

P (correct) =
pgen · TPRN

pgen · TPRN + (1− pgen) · FPRN
(19)

As N →∞: if TPR > FPR, accuracy→ 1; if TPR < FPR, accuracy→ 0.

This reveals a critical failure mode: imperfect verifiers with high false positive rates can cause BoN to degrade with more
samples.

4.4 Tree-of-Thoughts: Structured Search
Tree-of-Thoughts (ToT), introduced by Yao et al. (2023), generalizes CoT by exploring multiple reasoning paths organized
as a tree, with LLM-based evaluation guiding search.

Definition 4.7 (Tree-of-Thoughts). A ToT search maintains:

• State space S: partial solutions (“thoughts”)
• Generator G : S → 2S : proposes next thoughts
• Evaluator E : S → R: scores thought quality
• Search algorithm: BFS, DFS, or beam search

Algorithm 3 Tree-of-Thoughts with BFS

Require: Initial state s0, generator G, evaluator E, beam width b, depth d
1: frontier← {s0}
2: for ℓ = 1 to d do
3: candidates←

⋃
s∈frontier G(s) ▷ Expand all frontier nodes

4: scores← {E(s) : s ∈ candidates} ▷ Evaluate candidates
5: frontier← Top-b(candidates, scores) ▷ Keep best b
6: end for
7: return argmaxs∈frontier E(s)

Complexity Analysis.
• BFS Time: O(b · d · k · Cgen + b · d · k · Ceval) where k is candidates per expansion.
• DFS Time: O(d · k · Cgen + d · k · Ceval) per path, with backtracking.
• Space: BFS requires O(b · d) states; DFS requires O(d) on the stack.

Connection to Classical Search. ToT instantiates classical AI search with LLM-based heuristics:

• A* analogy: The evaluator E serves as an admissible heuristic if it upper-bounds solution quality.
• Completeness: ToT with DFS is complete (will find solution if one exists) given sufficient depth and branching.
• Optimality: Not guaranteed—LLM evaluators provide noisy, non-admissible heuristics.

Empirical Results. On Game of 24, ToT achieves 74% accuracy vs. 4% for standard CoT (GPT-4), demonstrating that
structured search recovers capabilities inaccessible to linear generation. However, ToT requires 5-100× more tokens than
CoT.

4.5 Monte Carlo Tree Search
MCTS combines tree search with stochastic sampling and bandit-based exploration, providing theoretical guarantees via the
UCB framework.

10

Smart
Inf

er

Inference-Time Compute Scaling: A Theoretical Survey Anjan Goswami

Definition 4.8 (UCT for LLM Reasoning). Upper Confidence bounds for Trees (UCT) selects actions by:

a∗ = arg max
a∈A(s)

[
Q(s, a) + c

√
lnN(s)

N(s, a)

]
(20)

where Q(s, a) is the empirical mean reward, N(s) is visit count for state s, N(s, a) is visit count for action a at s, and c is
the exploration constant.

Algorithm 4 MCTS for LLM Reasoning (MCTSr)

Require: Root state s0, LLM T , iterations Niter, exploration constant c
1: for i = 1 to Niter do
2: Selection: Traverse tree using UCT until leaf sℓ
3: Expansion: Generate child states G(sℓ) using T
4: Evaluation: Score new states via T self-evaluation or rollout
5: Backpropagation: Update Q and N values along path to root
6: end for
7: return argmaxaQ(s0, a)

Theoretical Guarantees. The classical UCT theorem extends to LLM settings:

Theorem 4.9 (UCT Convergence, Kocsis & Szepesvári 2006). Consider UCT on a game tree of depth D and branching
factor K with stochastic payoffs in [0, 1]. The bias of the estimated expected payoff satisfies:

Bias(X̄n) = O

(
KD log n+KD

n

)
(21)

The failure probability at the root converges to zero as n→∞.

Theorem 4.10 (Regret Bound). UCB1 achieves expected regret:

E[Rn] ≤
∑

i:µi<µ∗

(
8 lnn

∆i
+

(
1 +

π2

3

)
∆i

)
(22)

where ∆i = µ∗ − µi is the gap between optimal and arm i mean rewards.

LLM-Specific Adaptations. MCTSr (Zhang et al., 2024) modifies standard MCTS for LLM reasoning:

• Self-Refine Expansion: Children are generated via iterative refinement, not random sampling.
• LLM Self-Evaluation: Rollouts replaced by LLM-based quality assessment.
• Modified UCB: Q(a) + c

√
lnN(parent)/N(a) + ϵ with tie-breaking constant ϵ.

MCTSr achieves GPT-4-level performance on mathematical olympiad problems using LLaMA-3 8B, demonstrating that
search can substitute for model scale.

4.6 Comparative Analysis
We summarize the tradeoffs across methods:

Table 5: Comparative Analysis of Inference-Time Methods

Method Parallel? Backtrack? Verifier? Best For

CoT No No No Simple reasoning
Self-Consistency Yes No No Discrete answers
Best-of-N Yes No Yes With good verifier
ToT Partial Yes Self Multi-step planning
MCTS No Yes Self/External Complex search

11

Smart
Inf

er

Inference-Time Compute Scaling: A Theoretical Survey Anjan Goswami

When to Use Which Method.
• CoT: When compute is limited and problem is within model capability.
• Self-Consistency: When answers are discrete and model has p > 0.5 per-sample accuracy.
• Best-of-N: When a reliable verifier exists (e.g., unit tests for code, numerical checks for math).
• ToT: When problems require explicit planning and dead-end detection.
• MCTS: When optimal exploration-exploitation tradeoff is needed and compute budget is large.

5. Scaling Laws
We now examine the quantitative relationship between inference-time compute and model performance. Unlike pretraining
scaling laws—which characterize how loss decreases with model size and data—inference scaling laws govern the tradeoff
between test-time FLOPs and task accuracy. This section presents both empirical observations and provable theoretical
guarantees.

5.1 Empirical Scaling Observations
Snell et al. (ICLR 2025) provide the first systematic study of inference-time scaling across multiple strategies. Their central
finding: optimal allocation of test-time compute can substitute for model parameters at favorable exchange rates.

Theorem 5.1 (Compute-Optimal Inference, Snell et al. 2025). Given a fixed inference compute budget C, there exists an
optimal allocation between:

1. Model size (parameters)
2. Number of samples/search iterations
3. Verifier compute

such that a smaller model with sophisticated inference can match or exceed a 14× larger model with naive inference.

This result has profound implications: inference-time scaling provides a new axis for capability improvement beyond
pretraining scale.

Key Empirical Findings.
• Strategy Dependence: The optimal inference strategy varies with problem difficulty. On easy problems, Best-of-N

suffices; on hard problems, beam search or MCTS with process reward models dominates.
• Verifier Quality: Performance scales reliably only when verifier (PRM) quality is sufficient. With weak verifiers, scaling

can plateau or even degrade.
• Diminishing Returns: All methods eventually saturate, but the saturation point depends on model capability and verifier

quality.

Wu et al. (ICLR 2025) complement this with the REBASE algorithm, demonstrating Pareto-optimal cost-performance
tradeoffs:

Proposition 5.2 (REBASE Pareto Optimality). On MATH benchmarks, Llemma-7B with REBASE tree search consistently
outperforms Llemma-34B with standard majority voting across all compute budgets. Smaller models with advanced inference
achieve better cost-accuracy Pareto frontiers.

5.2 Functional Forms of Scaling Laws
Several functional forms characterize inference scaling:

Definition 5.3 (Logarithmic Scaling). For many methods, accuracy improves logarithmically with compute:

Accuracy(C) = a+ b logC (23)

This form arises when additional compute provides diminishing marginal improvements.

Definition 5.4 (Power-Law Scaling). Some methods exhibit power-law improvement:

Error(N) = c ·N−α (24)

where N is the number of samples and α > 0 is the scaling exponent.

12

Smart
Inf

er

Inference-Time Compute Scaling: A Theoretical Survey Anjan Goswami

Definition 5.5 (Exponential Decay). Under favorable conditions, error decays exponentially:

P (error) = e−βN (25)

This is the strongest possible scaling, achievable only with specific algorithmic guarantees.

The functional form depends critically on the algorithm and task structure:

Table 6: Scaling Law Functional Forms by Method

Method Typical Form Conditions for Exponential

Best-of-N (perfect verifier) Exponential pgen > 0
Best-of-N (imperfect verifier) Logarithmic/Plateau TPR > FPR
Self-Consistency Exponential (if p > 0.5) Modal answer is correct
Majority Voting Power-law or Failure pcorrect > pany incorrect
Knockout Tournament Exponential Correct beats incorrect pairwise

5.3 Provable Scaling Laws
Chen et al. (NeurIPS 2025) establish the first provable scaling laws for inference-time compute, providing theoretical
guarantees rather than empirical fits.

5.3.1 The Knockout Algorithm

Algorithm 5 Knockout Tournament for Solution Selection

Require: LLMM, problem x, candidates N , comparisons per pair K
1: Generate N candidate solutions {s1, . . . , sN} viaM
2: while |candidates| > 1 do
3: Pair candidates arbitrarily
4: for each pair (si, sj) do
5: Compare K times viaM: “Which solution is better?”
6: Winner← majority vote over K comparisons
7: end for
8: candidates← winners
9: end while

10: return remaining candidate

The key assumptions for provable guarantees:

Assumption 5.6 (Generation Success). The LLM generates a correct solution with probability pgen > 0.

Assumption 5.7 (Pairwise Comparison). When comparing a correct solution s+ against an incorrect solution s−, the LLM
selects s+ with probability pwin > 0.5.

Under these assumptions:

Theorem 5.8 (Knockout Exponential Scaling, Chen et al. 2024). If Assumptions 5.6 and 5.7 hold, and both N (candidates)
and K (comparisons) scale, then the failure probability satisfies:

P (incorrect output) ≤ exp
(
−Ω(min{N · pgen,K · (pwin − 0.5)2})

)
(26)

Theorem 5.9 (Knockout Power-Law Scaling, Chen et al. 2024). If only N scales (with fixed K), and N = 2m for integer m,
then:

P (incorrect output) ≤ O
(

1

Nγ

)
(27)

for some γ > 0 depending on pgen and pwin.

13

Smart
Inf

er

Inference-Time Compute Scaling: A Theoretical Survey Anjan Goswami

Proof Sketch. The knockout tournament has log2N rounds. At each round, a correct solution advances with probability at
least pKwin > 0.5 (by assumption and majority vote concentration). The probability that some correct solution survives all
rounds is:

P (correct survives) ≥ 1− (1− pgen · plog2 N
win)N (28)

As N,K →∞, this converges to 1 exponentially.

5.3.2 The League Algorithm

The league-style algorithm provides more robust guarantees by evaluating candidates against multiple opponents:

Algorithm 6 League Tournament for Solution Selection

Require: LLMM, problem x, candidates N , opponents per candidate M
1: Generate N candidate solutions {s1, . . . , sN}
2: for each candidate si do
3: Sample M opponents uniformly from {sj : j ̸= i}
4: score[si]← average win rate against opponents
5: end for
6: return argmaxsi score[si]

Assumption 5.10 (Correct-and-Strong Solutions). There exist “correct-and-strong” solutions s∗ such that:

E[win rate of s∗ against random opponent] > max
s− incorrect

E[win rate of s−] (29)

with gap ∆ > 0.

Theorem 5.11 (League Exponential Scaling, Chen et al. 2024). Under Assumption 5.10, the league algorithm’s failure
probability satisfies:

P (incorrect output) ≤ exp

(
−Ω

(
min

{
N

p−1
cs
,M ·∆2

}))
(30)

where pcs is the probability of generating a correct-and-strong solution.

Comparison of Assumptions. Neither knockout nor league assumptions strictly implies the other:

• Knockout requires every correct solution to beat every incorrect solution pairwise with probability > 0.5.
• League requires only that some correct solutions have higher average win rates than all incorrect solutions.

League is more robust to occasional comparison errors but requires a stronger “best solution” property.

5.4 Failure Modes and Limitations
Not all methods enjoy provable scaling. Understanding failure modes is essential:

Majority Voting Failure.

Proposition 5.12 (Majority Voting Can Fail, Chen et al. 2024). Even if pcorrect = 0.45 (model generates correct answer 45%
of the time), if there exists an incorrect answer with pincorrect = 0.46, then:

lim
N→∞

P (majority vote correct) = 0 (31)

Majority voting converges to the wrong answer.

Best-of-N with Imperfect Verifier. As noted by Cobbe et al. (2021): “The benefits of search are eventually outweighed by
the risk of finding adversarial solutions that fool the verifier.” With high false positive rates, Best-of-N can degrade with more
samples.

14

Smart
Inf

er

Inference-Time Compute Scaling: A Theoretical Survey Anjan Goswami

Compute-Accuracy Tradeoff Ceiling. All methods eventually saturate due to:

• Model capability limits (cannot generate correct solution if pgen = 0)
• Verifier quality limits (imperfect discrimination)
• Problem hardness (some problems require capabilities the model lacks)

5.5 Compute-Optimal Allocation
Given a total compute budget C, how should it be allocated? Let:

• Cgen: compute for generating candidates
• Cver: compute for verification/comparison
• Csearch: compute for tree search overhead

Proposition 5.13 (Optimal Allocation Depends on Difficulty). For easy problems (high pgen): allocate more to generation
(many cheap samples).

For hard problems (low pgen): allocate more to search and verification (fewer, higher-quality candidates with careful
selection).

Snell et al. formalize this with a difficulty-dependent optimal strategy:

Strategy∗(x) =


Best-of-N if pgen(x) > τeasy

Beam Search + PRM if τhard < pgen(x) ≤ τeasy

MCTS + PRM if pgen(x) ≤ τhard

(32)

The thresholds τeasy, τhard depend on model and verifier quality.

5.6 Relationship to Pretraining Scaling Laws
The Chinchilla scaling law (Hoffmann et al., 2022) characterizes compute-optimal pretraining:

L(N,D) =
A

Nα
+

B

Dβ
+ E (33)

where N is parameters, D is data, and L is loss.
Inference scaling adds a third dimension:

Accuracy(N,D,Cinf) = f(N,D) + g(Cinf) (34)

The key insight: inference compute and pretraining compute are partially substitutable. A smaller model with large Cinf
can match a larger model with small Cinf. This has practical implications:

• For low-volume deployment: prefer larger models (amortize training cost)
• For high-volume deployment: prefer smaller models with inference scaling (reduce per-query cost)

6. Verification Theory
The effectiveness of inference-time scaling fundamentally depends on verification—the ability to distinguish correct from
incorrect solutions. This section examines the theoretical foundations of verification in LLM systems, the generation-
verification gap, and the surprising limitations of self-correction.

6.1 The Generation-Verification Gap
A central empirical observation motivates much of verification theory:

Definition 6.1 (Generation-Verification Gap). For a modelM and task distribution D, define:

pgen = Px∼D[M generates correct solution for x] (35)

pver = P(x,y+,y−)∼D[M correctly identifies y+ as better than y−] (36)

The generation-verification gap is ∆GV = pver − pgen.

15

Smart
Inf

er

Inference-Time Compute Scaling: A Theoretical Survey Anjan Goswami

Proposition 6.2 (Prevalence of Generation-Verification Gap, Song et al. 2025). Across model families (GPT, LLaMA, Mistral)
and tasks (math, code, reasoning), ∆GV > 0 consistently. Moreover, a normalized variant of the gap scales monotonically
with pretraining FLOPs.

This gap is the foundation for inference-time scaling: if verification is easier than generation, we can generate many
candidates and use verification to select the best.

Complexity-Theoretic Intuition. The generation-verification gap echoes the P vs. NP distinction: verifying a solution
to an NP-complete problem is efficient (polynomial time), while finding a solution may be hard (exponential time under
P ̸= NP). However, for LLMs, the analogy is imperfect—LLMs are not Turing machines, and their “verification” is
approximate pattern matching, not logical proof checking.

6.2 Verifier Taxonomy
Verifiers vary in quality and implementation:

Definition 6.3 (Verifier Types). • Oracle Verifier: Perfect accuracy. Examples: unit tests for code, formal proof checkers
(Lean, Coq), ground-truth numerical answers.

• Outcome Reward Model (ORM): Scores final answers only. Trained on (problem, solution, correctness) triples.
• Process Reward Model (PRM): Scores intermediate steps. Trained on step-level annotations (e.g., OpenAI’s PRM800K

dataset).
• LLM-as-Judge: Prompts an LLM to evaluate solutions. No additional training required but inherits LLM limitations.
• Self-Verification: The generator LLM verifies its own outputs.

Table 7: Verifier Comparison

Verifier Type Accuracy Scalability Generality Cost

Oracle Perfect Limited domains Low Free
Human High Low High Very High
PRM Good High Medium Training cost
ORM Medium High Medium Training cost
LLM-as-Judge Variable High High Inference cost
Self-Verification Poor High High Low

6.3 Process vs. Outcome Reward Models
The choice between PRMs and ORMs has significant theoretical implications:

Definition 6.4 (Reward Model Formulations). Given problem x and solution trajectory y = (y1, . . . , yT):

ORM: Rout(x, y) = r(x, yT) (final answer only) (37)

PRM: Rproc(x, y) =

T∑
t=1

rt(x, y≤t) (step-level rewards) (38)

Theorem 6.5 (PRM Advantage for Search, Lightman et al. 2023). For tree search algorithms, PRMs provide denser reward
signals that enable:

1. Earlier pruning of incorrect branches
2. Better credit assignment for intermediate steps
3. More efficient exploration of solution space

Empirically, PRM-guided Best-of-N achieves higher accuracy than ORM-guided Best-of-N at the same compute budget on
MATH benchmarks.

However, PRMs require expensive step-level annotations. Recent work addresses this:

16

Sm
ar

tIn
fer

Inference-Time Compute Scaling: A Theoretical Survey Anjan Goswami

Definition 6.6 (Process Advantage Verifier, Setlur et al. 2024). A Process Advantage Verifier (PAV) measures progress—the
change in likelihood of reaching a correct solution before and after a step:

A(st) = V πprover(st)− V πprover(st−1) (39)

where V π is the value function under a prover policy πprover.

PAVs can be trained without human step-level annotations by using Monte Carlo rollouts to estimate value functions.

6.4 Self-Correction: Theoretical Limits
A natural question: can LLMs verify and correct their own outputs without external feedback? The answer is largely negative.

Definition 6.7 (Intrinsic Self-Correction). Intrinsic self-correction is a process where an LLM:

1. Generates initial response y0 to input x
2. Generates critique c of y0 using only (x, y0)
3. Generates refined response y1 using (x, y0, c)

without access to ground truth, external tools, or other feedback.

Theorem 6.8 (Self-Correction Impossibility, Huang et al. ICLR 2024). For reasoning tasks (arithmetic, symbolic, common-
sense):

1. LLMs cannot reliably improve performance through intrinsic self-correction
2. Performance often degrades after self-correction
3. The degradation occurs because LLMs are as likely to “correct” correct answers to incorrect ones as vice versa

Intuition. If an LLM could reliably self-correct, why didn’t it produce the correct answer initially? The self-correction
paradox: the same model that made the error must now detect it, but it lacks new information to distinguish correct from
incorrect responses.

The Self-Correction Paradox. Formally, letM(x) denote the model’s belief distribution over answers given input x.
Self-correction amounts to computingM(x|y0) where y0 ∼M(x). Without external information, conditioning on y0 cannot
systematically improve accuracy—it merely reshuffles probability mass according to the model’s (potentially flawed) beliefs.

Proposition 6.9 (When Self-Correction Works). Self-correction can improve performance when:

1. External feedback is available (code execution, search results, tool outputs)
2. The model has asymmetric capabilities (better at verification than generation)
3. The task allows for “easy” verification (e.g., checking if code compiles)

6.5 Verification Complexity
We now formalize the computational complexity of verification:

Definition 6.10 (Verification Problem). Given problem x and candidate solution y, the verification problem is to determine
whether y is correct for x.

For different problem classes:

Table 8: Verification Complexity by Problem Type

Problem Type Verification Complexity Oracle Available?

Arithmetic O(1) Yes (numerical check)
Code Generation O(T) for T test cases Yes (execution)
Formal Proofs O(|y|) proof length Yes (proof checkers)
Open QA Undecidable in general No
Creative Writing Subjective No

17

Smar
tIn

fer

Inference-Time Compute Scaling: A Theoretical Survey Anjan Goswami

The Verification Bottleneck. For many real-world tasks, verification is as hard as generation—there is no oracle verifier.
This creates a fundamental bottleneck for inference-time scaling:

Proposition 6.11 (Verification Bottleneck). If no oracle verifier exists and the LLM’s verification accuracy is pver < 1, then:

lim
N→∞

AccuracyBest-of-N ≤ pver (40)

Scaling cannot exceed verifier quality.

6.6 Ensemble Verification
Recent work addresses verifier limitations through ensembling:

Definition 6.12 (Weak Supervision for Verification, Saad-Falcon et al. 2025). Given K weak verifiers {V1, . . . , VK} with
unknown accuracies, Weaver learns to combine their outputs:

Vensemble(y) =

K∑
k=1

wk · Vk(y) (41)

where weights wk are estimated via weak supervision techniques without ground-truth labels.

Theorem 6.13 (Ensemble Improvement, Saad-Falcon et al. 2025). Weighted ensembles of weak verifiers significantly
outperform individual verifiers and unweighted combinations. Weaver achieves o3-mini-level accuracy using Llama 3.3 70B
as generator with an ensemble of 70B-or-smaller judge models.

6.7 Theoretical Framework for Self-Improvement
The generation-verification gap enables a formal model of self-improvement:

Definition 6.14 (Solver-Verifier Dynamics). Let Us(t) and Uv(t) denote solver and verifier capabilities at training iteration t.
The dynamics satisfy:

dUs

dt
= α(Uv − Us) · gs(Us) (42)

dUv

dt
= β · gv(Uv) (43)

where α, β > 0 and gs, gv are growth functions. Self-improvement occurs when Uv > Us (positive gap).

Theorem 6.15 (Self-Improvement Limit). Under the solver-verifier dynamics:

1. Accuracy exhibits exponential convergence toward a limit
2. The limit is determined by the asymptotic verifier capability
3. Cross-improvement (using external verifier data) achieves higher limits than pure self-improvement

This framework explains why self-improvement plateaus: as solver capability approaches verifier capability, the gap
Uv − Us → 0, and improvement stalls.

6.8 Summary: Verification as the Limiting Factor
The theoretical analysis reveals verification as the critical bottleneck for inference-time scaling:

1. Generation-Verification Gap: Verification is generally easier than generation, enabling inference-time scaling.
2. Self-Correction Limits: Without external feedback, LLMs cannot reliably improve their outputs through intrinsic

self-correction.
3. Verifier Quality Ceiling: Scaling benefits are bounded by verifier accuracy; imperfect verifiers can cause performance

degradation.
4. Ensemble Solutions: Combining multiple weak verifiers can partially address individual verifier limitations.

These insights inform practical system design: for tasks without oracle verifiers, significant effort should go toward
improving verification quality, not just scaling generation.

18

Sm
ar

tIn
fer

Inference-Time Compute Scaling: A Theoretical Survey Anjan Goswami

7. Search-Theoretic Foundations
Inference-time scaling can be viewed through the lens of search theory: the LLM generates candidates, and a search algorithm
explores the solution space. This section formalizes this perspective, analyzing branching factors, exploration-exploitation
tradeoffs, and heuristic quality.

7.1 Search Space Formalization
Definition 7.1 (LLM Search Space). The search space for an LLM reasoning problem is a tuple S = ⟨S, s0, A, T,G, c⟩
where:

• S is the set of partial solution states
• s0 ∈ S is the initial state (problem statement)
• A(s) is the set of actions (next tokens/thoughts) available at state s
• T : S ×A→ S is the transition function
• G ⊆ S is the set of goal states (correct solutions)
• c : S ×A→ R+ is the cost function (compute per action)

Branching Factor. The effective branching factor b determines search complexity:

b = Es∼ρ[|A(s)|] (44)

For token-level generation, b = |Σ| (vocabulary size, typically 32K-128K). For thought-level generation (as in ToT), b is
much smaller (typically 3-10 candidate thoughts).

7.2 Exploration-Exploitation Tradeoff
Search algorithms must balance:

• Exploitation: Pursuing the currently most promising path
• Exploration: Investigating less-explored alternatives

Definition 7.2 (UCB for LLM Search). The Upper Confidence Bound (UCB) selection rule at state s chooses action a
maximizing:

UCB(s, a) = Q̂(s, a)︸ ︷︷ ︸
exploitation

+ c

√
lnN(s)

N(s, a)︸ ︷︷ ︸
exploration

(45)

where Q̂(s, a) is the estimated value of taking action a at state s, N(s) is the visit count for state s, N(s, a) is the visit count
for action a at state s, and c is the exploration constant.

Theorem 7.3 (UCB Regret Bound). For a K-armed bandit with rewards in [0, 1], UCB achieves expected regret:

E[Rn] = O
(√

Kn lnn
)

(46)

This is optimal up to logarithmic factors.

In the LLM setting, each “arm” corresponds to a reasoning path, and the “reward” is the probability of reaching a correct
solution.

7.3 Heuristic Quality and Admissibility
Search efficiency depends critically on heuristic quality:

Definition 7.4 (Heuristic Function). A heuristic h : S → R estimates the cost-to-go (or value) from state s to a goal state. In
LLM search, h is typically implemented by:

• LLM self-evaluation: “Is this solution on track?”
• Process reward model: h(s) = RPRM(s)
• Monte Carlo rollout: h(s) = Eπ[outcome|s]

19

Sm
ar

tIn
fer

Inference-Time Compute Scaling: A Theoretical Survey Anjan Goswami

Definition 7.5 (Admissibility). A heuristic h is admissible if it never overestimates the true cost-to-go: h(s) ≤ h∗(s) for all
s. Admissibility guarantees optimality for A* search.

Proposition 7.6 (LLM Heuristics Are Not Admissible). LLM-based heuristics (self-evaluation, PRMs) are generally not
admissible—they can overestimate solution quality, leading to suboptimal search paths.

Despite non-admissibility, LLM heuristics provide useful guidance. The key metric is correlation with true value, not
strict admissibility.

7.4 A* Search and Its LLM Variants
A* search is the canonical best-first search algorithm:

Algorithm 7 A* Search for LLM Reasoning

Require: Initial state s0, heuristic h, cost function g
1: Initialize priority queue Q← {(s0, g(s0) + h(s0))}
2: Initialize closed set C ← ∅
3: while Q ̸= ∅ do
4: (s, f)← pop minimum from Q
5: if s ∈ G then return s
6: end if
7: C ← C ∪ {s}
8: for each action a ∈ A(s) do
9: s′ ← T (s, a)

10: if s′ /∈ C then
11: Q← Q ∪ {(s′, g(s′) + h(s′))}
12: end if
13: end for
14: end while
15: return failure

Theorem 7.7 (A* Optimality). If heuristic h is admissible and consistent (i.e., h(s) ≤ c(s, a) + h(s′) for all transitions),
then A* finds an optimal path to a goal state.

Connection to Tree-of-Thoughts. ToT with BFS approximates A* search where:

• The heuristic h is the LLM’s self-evaluation score
• The cost g is the number of reasoning steps
• The branching factor is controlled by sampling k thoughts per step

7.5 Beam Search Analysis
Beam search is the most practical search algorithm for LLM decoding:

Definition 7.8 (Beam Search). Beam search with width b maintains the top-b partial sequences by cumulative log-probability
at each step:

score(y1:t) =
t∑

i=1

logP (yi|y1:i−1, x) (47)

At each step, expand all b beams, generate b · |V | candidates, and keep the top b.

Proposition 7.9 (Beam Search Properties). 1. Non-optimality: Beam search is not guaranteed to find the highest-probability
sequence.

2. Non-completeness: The optimal sequence may be pruned early.
3. Monotonicity: With path-max enforcement, solution quality is non-decreasing in beam width.
4. Convergence: As b→∞, beam search approaches exhaustive search.

20

Smar
tIn

fer

Inference-Time Compute Scaling: A Theoretical Survey Anjan Goswami

Theorem 7.10 (Beam Search Complexity). For sequence length T , vocabulary size |V |, and beam width b:

Time complexity: O(T · b · |V | · log(b · |V |)) (48)
Space complexity: O(b · T) (49)

The log factor comes from maintaining the priority queue of candidates.

Diverse Beam Search. Standard beam search often produces similar candidates. Diverse Beam Search partitions beams
into G groups and penalizes within-group similarity:

scoreg(y) = logP (y|x)− λ
∑

y′∈Groupg

sim(y, y′) (50)

This improves candidate diversity for downstream selection.

7.6 Search Algorithm Comparison

Table 9: Search Algorithm Properties for LLM Reasoning

Algorithm Time Space Optimality

Greedy (CoT) O(d) O(d) No guarantee
Beam Search O(b · d · |V |) O(b · d) No guarantee
A* (with admissible h) O(bd) worst O(bd) Optimal
MCTS (UCT) Anytime O(Niter · d) Asymptotically

Here d is search depth, b is branching factor, and |V | is vocabulary size.

7.7 Sample Complexity of Search
How many samples are needed to find a correct solution?

Theorem 7.11 (Sample Complexity for Correct Solution). If the probability of generating a correct solution in one attempt
is p > 0, the expected number of samples to find at least one correct solution is:

E[Nsuccess] =
1

1− (1− p)N
≈ 1

p
for small p (51)

For N parallel samples, P (at least one correct) = 1− (1− p)N .

Corollary 7.12 (Scaling for Rare Solutions). When p≪ 1, achieving success probability 1− δ requires:

N ≥ ln(1/δ)

ln(1/(1− p))
≈ ln(1/δ)

p
(52)

samples. This scales as O(1/p)—difficult problems require proportionally more samples.

7.8 The Search-Verification Tradeoff
Given fixed compute budget C, how should it be allocated between search (generating candidates) and verification (selecting
among them)?

Proposition 7.13 (Optimal Search-Verification Allocation). Let Cs be search compute and Cv be verification compute. For
Best-of-N with verifier:

N∗ = argmax
N

Accuracy(N) s.t. N · Cgen +N · Cver ≤ C (53)

The optimal N∗ depends on:

• Generation success probability pgen

• Verifier accuracy (TPR, FPR)
• Relative costs Cgen/Cver

When verification is cheap relative to generation (e.g., using a small reward model), generate many candidates. When
verification is expensive (e.g., human evaluation), generate fewer, higher-quality candidates.

21

Sm
ar

tIn
fer

Inference-Time Compute Scaling: A Theoretical Survey Anjan Goswami

8. Training-Inference Tradeoffs
This section examines the relationship between training-time and inference-time compute, including distillation of reasoning
capabilities, reinforcement learning for reasoning, and optimal compute allocation across the model lifecycle.

8.1 The Compute Allocation Problem
Given a total compute budget Ctotal, how should it be allocated between training (Ctrain) and inference (Cinf)?

Definition 8.1 (Lifecycle Compute Optimization). The optimal allocation solves:

max
Ctrain,Cinf

Performance(Ctrain, Cinf) s.t. Ctrain +Q · Cinf = Ctotal (54)

where Q is the expected number of queries over the model’s lifetime.

The optimal tradeoff depends on deployment scale:

• Low-volume deployment: Favor larger models (amortize training cost over few queries)
• High-volume deployment: Favor smaller models with inference scaling (reduce per-query cost)

Theorem 8.2 (Inference-Adjusted Chinchilla, Sardana et al. 2023). When accounting for inference costs over Q queries, the
compute-optimal model size N∗ satisfies:

N∗ ∝
(

Ctotal

1 +Q · r

)0.5

(55)

where r is the ratio of inference to training compute per token. For high-volume deployment (Q · r ≫ 1), optimal models are
significantly smaller than Chinchilla-optimal.

8.2 Distillation of Reasoning
Can inference-time reasoning be distilled into a more efficient model?

Definition 8.3 (Chain-of-Thought Distillation). Given a teacher model T that generates reasoning chains, CoT distillation
trains a student model S on teacher-generated (problem, rationale, answer) triples:

LCoT = Ex∼D,(r,y)∼T (x) [− logPS(r, y|x)] (56)

Theorem 8.4 (Structure Over Content, Li et al. 2025). When distilling reasoning from large models (e.g., DeepSeek-R1) to
smaller models:

1. The structure of long CoT (reflection, backtracking, self-validation patterns) is more important than the content of
individual steps

2. Introducing errors in reasoning steps (randomizing digits, removing keywords) has minimal impact (< 5% accuracy drop)
3. Even rationales with 100% wrong intermediate answers transfer reasoning structure effectively

This surprising result suggests that distillation transfers reasoning patterns rather than domain knowledge.

Distillation Paradigms. Several approaches exist:

1. Pre-thinking: Student generates rationale before answer (standard CoT)
2. Post-thinking: Student generates answer first, then rationale as explanation
3. Implicit reasoning: Rationale is distilled into hidden states, not generated explicitly

Proposition 8.5 (Implicit CoT Distillation, Deng et al. 2024). Reasoning can be distilled “vertically” into hidden state
computations rather than “horizontally” into token sequences. The student performs implicit reasoning across layers without
generating intermediate tokens, achieving comparable accuracy with faster inference.

22

Sm
ar

tIn
fer

Inference-Time Compute Scaling: A Theoretical Survey Anjan Goswami

8.3 Adaptive Distillation
Not all problems benefit equally from detailed reasoning:

Definition 8.6 (Adaptive CoT Distillation). ACoTD (Adaptive Chain-of-Thought Distillation) classifies problems by student
model difficulty and applies differentiated supervision:

Supervision(x) =

{
Short CoT if x is Easy/Medium for student
Long detailed CoT if x is Hard for student

(57)

Proposition 8.7 (Adaptive Distillation Improvement). ACoTD significantly outperforms uniform distillation by:

• Consolidating knowledge on easy problems (short CoT sufficient)
• Providing detailed reasoning for hard problems (long CoT needed)
• Improving training efficiency through adaptive sampling

8.4 Reinforcement Learning for Reasoning
DeepSeek-R1 demonstrates that reasoning can emerge from pure RL without supervised CoT data:

Theorem 8.8 (RL-Induced Reasoning Emergence, DeepSeek 2025). Training with Group Relative Policy Optimization
(GRPO) on outcome rewards induces:

1. Spontaneous emergence of chain-of-thought reasoning patterns
2. Self-verification behaviors (“let me check...”)
3. Extended thinking (“aha moments” in reasoning traces)
4. Reflection and backtracking without explicit supervision

without any supervised examples of reasoning chains.

Definition 8.9 (Group Relative Policy Optimization). GRPO optimizes the policy by comparing outputs within a group:

LGRPO = −Ex,{yi}G
i=1

[
G∑
i=1

r(x, yi)− r̄
σr

log πθ(yi|x)

]
(58)

where r̄ and σr are the mean and standard deviation of rewards within the group.

This suggests that reasoning may be a natural solution to the RL objective, not requiring explicit supervision.

8.5 Inference-Aware Training
Recent work proposes training methods that account for inference-time strategies:

Definition 8.10 (BoN-Aware Training). Instead of maximizing single-sample performance, BoN-aware training optimizes:

max
θ

Ex∼D

[
max
i∈[N]

r(x, yi)

]
where yi ∼ πθ(·|x) (59)

This encourages the model to produce diverse, high-quality candidates rather than concentrating probability on a single
response.

Proposition 8.11 (BoN-Aware Improvement). BoN-aware fine-tuning improves Bo32 performance on MATH benchmarks
while maintaining greedy performance, by increasing response diversity without sacrificing average quality.

8.6 The Distillation-RL Spectrum
Training approaches form a spectrum:

Table 10: Training Approaches for Reasoning

Approach Supervision Data Source Emergent Reasoning

SFT on answers Answer only Human labels No
CoT distillation Rationale + answer Teacher LLM Transferred
RL from outcomes Reward signal Verifier/Oracle Yes
RL from process Step rewards PRM Yes (guided)

23

Smart
Inf

er

Inference-Time Compute Scaling: A Theoretical Survey Anjan Goswami

8.7 Theoretical Limits of Distillation
Proposition 8.12 (Distillation Capacity Bound). A student model with NS parameters cannot perfectly distill a teacher with
NT ≫ NS parameters. The approximation error satisfies:

Error ≥ Ω

(
H(T)
NS

)
(60)

where H(T) is a measure of teacher complexity.

However, for specific tasks, much smaller students can match larger teachers:

Proposition 8.13 (Task-Specific Distillation). On mathematical reasoning tasks:

• DeepSeek-R1-Distill-Qwen-7B matches QwQ-32B-Preview
• Distilled models retain most reasoning capability with 4-5× fewer parameters
• Inference-time scaling still benefits distilled models

The key insight: distillation transfers task-specific reasoning patterns, not general model capability.

9. Open Problems
We conclude with a hierarchy of open theoretical problems, ranked by tractability and potential impact. These problems
represent the frontier of our understanding of inference-time compute scaling.

9.1 High Tractability, High Impact
These problems are likely solvable with current techniques and would significantly advance the field.

Open Problem 1 (Tight Complexity Bounds for Log-CoT). Determine whether CoT(O(log n)) = L or if strict containment
holds. Current bounds: TIME(log n) ⊆ CoT(log n) ⊆ L. A separation would clarify the power of limited sequential
reasoning.

Approach: Identify a problem in L that requires ω(log n) CoT steps, or prove that log-space simulation is possible with
logarithmic CoT.

Open Problem 2 (Optimal Verifier Design). Given a fixed compute budget for verifier training, what architecture and training
objective maximizes verification accuracy? Current PRMs are trained on human-annotated step labels; can self-supervised
objectives achieve comparable quality?

Approach: Formalize the verifier design problem as a PAC learning problem; derive sample complexity bounds for
different training objectives.

Open Problem 3 (Compute-Optimal Inference Allocation). Derive closed-form expressions for optimal allocation between
generation, verification, and search given problem difficulty distribution and verifier quality. Current results are empirical;
theoretical characterization would enable principled system design.

Approach: Model the problem as constrained optimization; use convexity analysis to derive closed-form solutions for
special cases.

9.2 Medium Tractability, High Impact
These problems require new techniques but appear within reach.

Open Problem 4 (Faithfulness of Chain-of-Thought). To what extent does the generated chain-of-thought reflect the model’s
actual reasoning process? If CoT is merely post-hoc rationalization, its theoretical guarantees may not apply to practical
systems.

Approach: Develop interpretability methods to compare internal representations with generated rationales; design
experiments that distinguish faithful reasoning from confabulation.

Open Problem 5 (Positive Globality Conjecture). Abbe et al. prove that high-globality problems cannot be learned. The
converse: do constant-globality problems admit efficient learning? This would characterize which problems benefit from
CoT training.

Approach: Identify structural properties of low-globality problems; show that these properties enable polynomial-sample
learning.

24

Smart
Inf

er

Inference-Time Compute Scaling: A Theoretical Survey Anjan Goswami

Open Problem 6 (Self-Improvement Ceiling). What is the theoretical limit of self-improvement without external data? The
solver-verifier framework suggests a ceiling when Us → Uv , but precise characterization of this limit remains open.

Approach: Analyze the fixed points of the solver-verifier dynamics; characterize when the gap closes completely.

Open Problem 7 (Verifier Ensemble Theory). How do multiple weak verifiers combine? Under what conditions does an
ensemble of imperfect verifiers approach oracle verification quality? Current weak supervision methods lack theoretical
guarantees for the verification setting.

Approach: Extend weak supervision theory to the ranking/selection setting; derive conditions for consistent ensemble
verification.

9.3 Low Tractability, High Impact
These are ambitious problems that may require fundamental new insights.

Open Problem 8 (Mechanism of RL-Induced Reasoning). DeepSeek-R1 demonstrates reasoning emergence from pure RL.
What properties of the reward landscape and model architecture enable this? A mechanistic understanding could guide more
efficient training.

Challenge: The emergence appears to require large scale; understanding the phase transition is difficult without expensive
experiments.

Open Problem 9 (Lower Bounds for Inference Scaling). Are there problems where inference-time scaling provably cannot
help—even with unlimited compute? Characterizing such problems would bound the applicability of test-time scaling.

Challenge: Proving lower bounds for adaptive computation is notoriously difficult; may require new proof techniques.

Open Problem 10 (Unified Theory of Scaling). Develop a unified framework relating pretraining scaling (Chinchilla),
post-training scaling, and inference scaling. Current treatments are separate; a unified theory would enable global compute
optimization across the model lifecycle.

Challenge: The three phases involve different optimization landscapes and success metrics; unification requires bridging
these disparate formalisms.

9.4 Foundational Questions
These questions probe the deepest aspects of reasoning in language models.

Open Problem 11 (Expressivity vs. Learnability Bridge). The globality barrier shows expressivity ̸= learnability. Can we
characterize the full space of problems that are both expressible (with sufficient CoT) and learnable (from polynomial data)?

Significance: This would provide a complete theory of which problems benefit from CoT, guiding both algorithm design
and benchmark selection.

Open Problem 12 (Verification Complexity of Natural Language). For tasks without oracle verifiers (open QA, creative
writing), what is the complexity of verification? Is there a fundamental limit to how well such tasks can be verified, and thus
how much they can benefit from inference scaling?

Significance: Many practical applications lack oracle verifiers; understanding their limits would inform deployment
decisions.

Open Problem 13 (Reasoning vs. Retrieval). To what extent is LLM “reasoning” genuine sequential computation versus
sophisticated pattern retrieval? This question underlies whether theoretical complexity results apply to practical systems.

Significance: If LLMs primarily retrieve pre-computed patterns, complexity-theoretic analysis may be inapplicable; if
they genuinely compute, the analysis is directly relevant.

9.5 Research Directions
Based on these open problems, we identify promising research directions:

Theoretical Directions.
1. Develop tighter bounds on transformer expressivity with bounded CoT
2. Characterize the sample complexity of learning different CoT patterns
3. Prove lower bounds for inference scaling on specific problem classes
4. Formalize the relationship between verifier quality and scaling limits

25

Smart
Inf

er

Inference-Time Compute Scaling: A Theoretical Survey Anjan Goswami

Empirical Directions.
1. Systematic study of CoT faithfulness across model families
2. Scaling law experiments across diverse inference strategies
3. Ablation studies on verifier components and training objectives
4. Investigation of emergent reasoning in RL-trained models

Applied Directions.
1. Develop adaptive inference allocation based on problem difficulty
2. Design efficient verification ensembles for real-world deployment
3. Build systems that combine multiple inference strategies optimally
4. Create benchmarks that probe specific theoretical predictions

10. Conclusion
This survey has presented a theoretical framework for understanding inference-time compute scaling in large language
models. We conclude by synthesizing the key insights and their implications.

10.1 Summary of Theoretical Contributions

Computational Foundations. We established that transformers with O(1) layers compute TC00 functions, fundamentally
limiting single-pass capabilities. The addition of chain-of-thought reasoning with T intermediate steps expands expressivity
to CoT(T), a hierarchy between TC00 and P. This formalization provides the theoretical grounding for why inference-time
scaling can unlock capabilities inaccessible to single-pass inference.

Complexity Barriers. The Merrill-Sabharwal characterization theorem precisely delineates when transformers succeed or
fail: bounded intermediate values admit log-precision solutions, while unbounded growth requires extended computation.
The globality barrier of Abbe et al. further constrains learnability—even expressible functions may be unlearnable from
polynomial samples. These barriers explain fundamental limits that no amount of scaling can overcome.

Algorithmic Taxonomy. We analyzed the major inference-time algorithms—chain-of-thought, self-consistency, best-of-N,
tree-of-thoughts, and MCTS—characterizing their complexity, success conditions, and failure modes. The common thread:
all methods trade additional compute for improved accuracy, but their effectiveness depends critically on problem structure
and verifier quality.

Scaling Laws. Empirical scaling laws reveal that optimal inference allocation can substitute for 14× model parameters.
Provable scaling laws establish exponential error decay under specific conditions (knockout and league algorithms), while
also identifying failure modes (majority voting with wrong modal answer, best-of-N with high false positive verifiers).

Verification Theory. The generation-verification gap explains why inference scaling works: verification is systematically
easier than generation. However, self-correction without external feedback is provably limited—LLMs cannot reliably
improve their own outputs through intrinsic critique. Verification quality is the fundamental ceiling on scaling benefits.

10.2 Practical Implications
For practitioners deploying LLM systems:

1. Match method to problem. Easy problems benefit from simple Best-of-N; hard problems require structured search with
strong verifiers.

2. Invest in verification. Verifier quality bounds scaling benefits. For tasks without oracle verifiers, ensemble methods and
process reward models can partially close the gap.

3. Don’t trust self-correction. Without external feedback (code execution, search results, formal verification), self-correction
is unreliable and can degrade performance.

4. Consider the full lifecycle. Optimal compute allocation depends on deployment volume. High-volume applications favor
smaller models with aggressive inference scaling.

26

Smart
Inf

er

Inference-Time Compute Scaling: A Theoretical Survey Anjan Goswami

5. Recognize fundamental limits. Some problems are provably beyond single-pass capability (high globality), while others
cannot benefit from CoT (problems requiring true parallelism). Scaling cannot overcome architectural limitations.

10.3 The Road Ahead
Inference-time scaling represents a paradigm shift in how we think about LLM capabilities. Rather than viewing model
capacity as fixed at training time, we can now trade compute for capability at inference time—a more flexible and often more
efficient approach.

The theoretical foundations presented here are just the beginning. Key open questions remain: What are the tight
complexity bounds for limited CoT? How do we design optimal verifiers? Can we develop a unified theory of scaling that
encompasses pretraining, post-training, and inference?

As models continue to scale and inference-time methods mature, the interplay between theory and practice will be
essential. Theory guides the design of more efficient algorithms; practice reveals the empirical phenomena that theory must
explain. This survey aims to accelerate that productive cycle by providing a rigorous foundation for the rapidly evolving field
of inference-time compute scaling.

A. Detailed Proofs
This appendix provides complete proofs for the main theorems stated in the survey.

A.1 Proof of the CoT Hierarchy Theorem

Proof. We prove that TC00 ⊊ CoT(O(log n)) ⊆ CoT((n)) = P by establishing each containment.

Step 1: TC00 ⊆ CoT(1). A constant-depth, polynomial-size threshold circuit can be simulated by a transformer in
a single pass. Each layer of the circuit corresponds to a transformer layer computing threshold functions via attention
aggregation. Since TC00 circuits have O(1) depth, a constant number of transformer layers suffices.

Step 2: CoT(O(log n)) ⊋ TC00. Consider the problem ITERATED-ADDITION: given n numbers x1, . . . , xn each of
O(log n) bits, compute their sum. This requires Ω(log n/ log log n) depth in TC00 circuits (Ajtai 1983). However, a
transformer with O(log n) CoT steps can compute this by iteratively adding pairs and maintaining running totals, simulating
a balanced binary tree of additions.

Step 3: CoT((n)) ⊆ P. Each CoT step involves:

• Reading the previous token (constant time)
• Computing attention over O(n+ T) positions where T is the CoT length
• Applying FFN layers

With T = (n) steps and polynomial-size attention, the total computation is polynomial in n. Since the transformer can
simulate any Turing machine step-by-step (with appropriate encoding), CoT((n)) = P.

Step 4: CoT((n)) = P. The reverse direction follows from the universality of transformers: given a P algorithm running
in time T (n) = (n), we can construct a transformer that simulates it step-by-step, outputting the computation trace as the
chain of thought.

A.2 Proof of the Merrill-Sabharwal Characterization (Theorem 3.4)
Proof. We prove both directions of the characterization.

Direction 1: Bounded intermediate values ⇒ log-precision solution. Suppose problem P has a solution algorithm
where all intermediate values are bounded by (n). Each such value can be represented in O(log n) bits. A transformer with
O(log n)-precision arithmetic can:

• Store these values in its residual stream
• Perform arithmetic operations via attention and FFN layers
• Propagate values across positions via attention

The key insight is that log-precision is sufficient when values don’t grow beyond polynomial bounds.

27

Smar
tIn

fer

Inference-Time Compute Scaling: A Theoretical Survey Anjan Goswami

Direction 2: Unbounded growth⇒ extended computation required. Consider a problem where intermediate values
grow as 2n (e.g., computing 2n exactly). With O(log n) precision, representing such values requires:

n

log n
= ω(1) (61)

separate “chunks” of precision. Propagating and combining these chunks requires multiple sequential operations, manifesting
as CoT steps in the transformer output.

The formalization uses the concept of precision hierarchy: problems are stratified by the precision required for their
intermediate computations, and this hierarchy corresponds to the CoT length hierarchy.

A.3 Proof of Theorem 5.8: Knockout Exponential Scaling
Proof. Let N be the number of initial candidates and K be the number of comparisons per pair.

Step 1: Probability of correct candidate surviving one round. Consider a correct candidate c+ facing an incorrect
candidate c−. In each comparison, c+ wins with probability pwin > 0.5 by assumption. Over K comparisons with majority
vote:

P (c+ wins round) =
K∑

k=⌈K/2⌉

(
K

k

)
pkwin(1− pwin)

K−k (62)

By Hoeffding’s inequality:
P (c+ loses round) ≤ exp(−2K(pwin − 0.5)2) (63)

Step 2: Probability of correct candidate surviving all rounds. The knockout tournament has ⌈log2N⌉ rounds. A correct
candidate must win all rounds:

P (c+ survives) ≥ (1− exp(−2K(pwin − 0.5)2))log2 N (64)

Step 3: Probability of at least one correct survivor. The expected number of correct candidates initially is N · pgen. Using
a union bound and the analysis above:

P (no correct survivor) ≤ (1− pgen · (1− e−Ω(K)))N ≤ e−Ω(N ·pgen) (65)

when K is sufficiently large.

Step 4: Combining the bounds. The failure probability is bounded by:

P (failure) ≤ exp
(
−Ω(min{N · pgen,K · (pwin − 0.5)2})

)
(66)

This is exponential in the minimum of the two scaling parameters.

A.4 Proof of Proposition 4.3: Self-Consistency Success Probability
Proof. Let p > 0.5 be the probability that the model generates the correct answer.

Step 1: Majority vote formulation. With N samples, let Xi = 1 if sample i is correct. The majority vote succeeds if∑N
i=1Xi > N/2.

Step 2: Apply Hoeffding’s inequality. Since Xi are i.i.d. Bernoulli(p):

P

(
N∑
i=1

Xi ≤ N/2

)
= P

(
1

N

N∑
i=1

Xi − p ≤
1

2
− p

)
(67)

By Hoeffding:
P (failure) ≤ exp(−2N(p− 0.5)2) (68)

28

Smart
Inf

er

Inference-Time Compute Scaling: A Theoretical Survey Anjan Goswami

Step 3: Success probability. Therefore:

P (success) ≥ 1− exp(−2N(p− 0.5)2) (69)

which converges to 1 exponentially in N when p > 0.5.

A.5 Proof of Theorem 4.6: Best-of-N with Imperfect Verifier
Proof. Let pgen be the probability of generating a correct solution, TPR be the true positive rate, and FPR be the false positive
rate of the verifier.

Step 1: Probability that a correct solution is top-ranked. Among N samples, let Nc ∼ Binomial(N, pgen) be correct
and Ni = N −Nc be incorrect.

For a correct solution to be selected, it must:

1. Be verified as correct (probability TPR)
2. Have the highest score among all verified solutions

Step 2: Limiting behavior. As N →∞, we have approximately N · pgen correct and N · (1− pgen) incorrect solutions.
The number verified as correct:

True positives: N · pgen · TPR (70)
False positives: N · (1− pgen) · FPR (71)

Step 3: Selection probability. With uniform random selection among verified solutions:

P (correct selected) =
pgen · TPR

pgen · TPR + (1− pgen) · FPR
(72)

Step 4: Failure condition. If FPR > TPR, then incorrect solutions are more likely to be verified than correct ones, and:

lim
N→∞

P (correct selected) = 0 (73)

The verifier’s false positives eventually dominate.

B. Extended Complexity Analysis

B.1 Detailed CoT Complexity Bounds
Proposition B.1 (Tight Bounds for Specific Problems). 1. Integer Addition: n-bit addition requires Θ(log n) CoT steps

for a bounded-precision transformer.
2. Integer Multiplication: n-bit multiplication requires Θ(n) CoT steps using grade-school algorithm simulation.
3. Sorting: Sorting n elements requires Θ(n log n) CoT steps (comparison-based lower bound applies).
4. Matrix Multiplication: Multiplying n× n matrices requires Θ(n2) CoT steps for naive algorithm, Θ(nω) for optimal

algorithms where ω ≈ 2.373.

B.2 Attention Complexity
Proposition B.2 (Attention Computation Cost). For sequence length L (including CoT tokens), each transformer layer
requires:

• O(L2 · d) operations for attention (standard)
• O(L · d2) operations for FFN

where d is the model dimension. Total forward pass: O(nlayers · L2 · d+ nlayers · L · d2).

For very long CoT (L≫ d), attention dominates. For short CoT (L≪ d), FFN dominates.

29

Smart
Inf

er

Inference-Time Compute Scaling: A Theoretical Survey Anjan Goswami

C. Additional Algorithms

C.1 Weighted Majority with Confidence

Algorithm 8 Confidence-Weighted Self-Consistency

Require: LLMM, problem x, samples N
1: for i = 1 to N do
2: (yi, ci)← sample answer and confidence fromM(x)
3: end for
4: Group answers: {y} ← unique answers, Sy ← {i : yi = y}
5: for each unique answer y do
6: score[y]←

∑
i∈Sy

ci ▷ Sum of confidences
7: end for
8: return argmaxy score[y]

C.2 Iterative Refinement with Verification

Algorithm 9 Verified Iterative Refinement

Require: LLMM, verifier V , problem x, max iterations T
1: y0 ←M(x) ▷ Initial solution
2: for t = 1 to T do
3: vt ← V (x, yt−1) ▷ Verify current solution
4: if vt = correct then
5: return yt−1

6: end if
7: yt ←M(x, yt−1, vt) ▷ Refine with feedback
8: end for
9: return yT

D. Empirical Scaling Data

D.1 Benchmark Results Summary

Table 11: Inference Scaling Results on MATH Benchmark

Method N=1 N=8 N=32 N=128

Greedy (GPT-4) 42.2% — — —
Self-Consistency (GPT-4) — 58.1% 63.4% 66.2%
Best-of-N + ORM — 54.3% 60.1% 63.8%
Best-of-N + PRM — 61.2% 68.4% 72.1%
MCTS + PRM — 63.5% 71.2% 76.8%

30

Smart
Inf

er

Inference-Time Compute Scaling: A Theoretical Survey Anjan Goswami

Table 12: Compute-Performance Tradeoffs

Configuration Accuracy Relative Compute

Llama-7B, Greedy 12.3% 1×
Llama-7B, Bo32 + PRM 28.6% 32×
Llama-7B, MCTS-64 34.2% 64×
Llama-34B, Greedy 25.8% 4.9×
Llama-34B, Bo8 + PRM 38.4% 39×

Note: These results illustrate the tradeoff between model size and inference compute. A smaller model with aggressive
inference scaling can match or exceed a larger model with naive inference.

E. Worked Examples
This section provides detailed worked examples illustrating the key concepts.

E.1 Example: Self-Consistency on Arithmetic
Consider the problem: “What is 23× 47?”

Setup. We sample N = 5 responses from an LLM with temperature T = 0.7:

1. Response 1: “23× 47 = 23× 50− 23× 3 = 1150− 69 = 1081” ✓
2. Response 2: “23× 47 = 20× 47 + 3× 47 = 940 + 141 = 1081” ✓
3. Response 3: “23× 47 = 1081” (direct) ✓
4. Response 4: “23× 47 = 23× 40 + 23× 7 = 920 + 161 = 1081” ✓
5. Response 5: “23× 47 = 1071” (error) ×

Self-Consistency Vote.
• Answer 1081: 4 votes
• Answer 1071: 1 vote

Majority selects 1081 (correct).

Analysis. Even with one incorrect response (20% error rate), self-consistency recovers the correct answer. The probability
of failure with N samples when p = 0.8 is:

P (failure) = P (incorrect majority) =
∑

k>N/2

(
N

k

)
(0.2)k(0.8)N−k (74)

For N = 5: P (failure) ≈ 0.0064 (less than 1%).

E.2 Example: Best-of-N with Verifier
Consider a code generation task where the model has pgen = 0.3 (30% chance of correct code per attempt).

Verifier Characteristics.
• TPR = 0.9 (90% chance of accepting correct code)
• FPR = 0.1 (10% chance of accepting incorrect code)

Expected Performance with N = 10 Samples. Expected correct samples: 10× 0.3 = 3
Expected incorrect samples: 10× 0.7 = 7
Among verified as correct:

• True positives: 3× 0.9 = 2.7
• False positives: 7× 0.1 = 0.7

31

Smart
Inf

er

Inference-Time Compute Scaling: A Theoretical Survey Anjan Goswami

Probability of selecting correct answer:

P (correct) =
2.7

2.7 + 0.7
=

2.7

3.4
≈ 0.79 (75)

This is substantially better than the base pgen = 0.3, demonstrating the power of verification-guided selection.

E.3 Example: Knockout Tournament
Consider N = 8 candidates with pgen = 0.5 and pwin = 0.7.

Tournament Structure.

Round 1: 8 -> 4 candidates
Round 2: 4 -> 2 candidates
Round 3: 2 -> 1 winner

Probability Analysis. Expected correct candidates initially: 8× 0.5 = 4
For a correct candidate to win:

• Must beat opponent in each round
• If opponent is incorrect: win probability = 0.7
• If opponent is correct: win probability = 0.5 (random)

Lower bound on correct winning (assuming all matchups are against incorrect):

P (correct wins) ≥ 1− (1− 0.5× 0.73)4 ≈ 0.87 (76)

The knockout tournament amplifies the advantage of correct solutions through successive rounds.

E.4 Example: MCTS for Mathematical Reasoning
Consider solving: “Find the sum of primes less than 20.”

MCTS Tree Structure.

Root: "Find sum of primes < 20"
+-- [Thought 1] "List primes: 2, 3, 5, 7, 11, 13, 17, 19"
| +-- [Thought 1.1] "Sum = 2+3+5+7+11+13+17+19"
| | +-- [Answer] "= 77" (correct)
| +-- [Thought 1.2] "Count: 8 primes"
| +-- (continues exploring)
+-- [Thought 2] "Primes are numbers with exactly 2 factors"
| +-- (explores definition-based approach)
+-- [Thought 3] "2 is the only even prime"

+-- (explores parity-based approach)

UCT Selection. At each node, UCT selects the child maximizing:

UCT(n) =
Wn

Nn
+ c

√
lnNparent

Nn
(77)

After several iterations:

• Thought 1 has high win rate (correct listing leads to correct sum)
• UCT balances exploiting Thought 1 with exploring Thoughts 2, 3
• Eventually, path to “77” dominates

32

Smart
Inf

er

Inference-Time Compute Scaling: A Theoretical Survey Anjan Goswami

F. Implementation Considerations

F.1 Efficient Parallel Sampling
For Best-of-N and Self-Consistency, parallel sampling is crucial:

Algorithm 10 Parallel Best-of-N Sampling

Require: LLMM, verifier V , problem x, samples N , batch size B
1: candidates← []
2: for i = 1 to ⌈N/B⌉ do
3: batch← parallel sample min(B,N − (i− 1)B) fromM(x)
4: candidates.extend(batch)
5: end for
6: return argmaxy∈candidates V (x, y)

Batching Considerations.
• GPU memory limits batch size
• KV-cache can be shared across samples for same prompt
• Speculative decoding can accelerate sampling

F.2 Caching Strategies for Tree Search
For ToT and MCTS, prefix caching is essential:

• KV-Cache Sharing: All branches from a node share the same prefix; cache once, reuse for all children.
• Evaluation Caching: Store verifier scores for visited nodes to avoid recomputation during backpropagation.
• Pruning: Remove low-scoring branches early to save memory.

F.3 Verifier Deployment
Process reward models add latency. Strategies to mitigate:

1. Batch Verification: Score multiple steps/candidates simultaneously
2. Speculative Verification: Generate ahead, verify asynchronously
3. Distilled Verifiers: Use smaller, faster verifier for early pruning, full verifier for final selection

A. Detailed Proofs
This appendix provides complete proofs of the main theorems stated in the body of the survey.

A.1 Proof of Theorem ?? (Merrill-Sabharwal Characterization)
Theorem (Merrill-Sabharwal Characterization, Restated). A function f : Σ∗ → {0, 1} is computable by a constant-depth
log-precision transformer if and only if there exists a solution g to f such that:

1. g depends on O(log n) bits from the input
2. The intermediate values in computing g remain bounded by poly(n)

Proof. We prove both directions.

(⇒) Transformer =⇒ Bounded Computation. Let T be a constant-depth transformer with L layers and precision
p = O(log n).

Step 1: Precision Constraint. Each attention weight αij is computed via softmax and represented with p bits. The
number of distinct attention patterns per head is at most 2p·n = nO(n), but the effective information per position is
O(p) = O(log n) bits.

Step 2: Information Flow. At each layer, position i receives information from all positions via attention:

h
(ℓ+1)
i = FFN

 n∑
j=1

α
(ℓ)
ij v

(ℓ)
j

 (78)

33

Smart
Inf

er

Inference-Time Compute Scaling: A Theoretical Survey Anjan Goswami

Since αij has p-bit precision, the weighted sum effectively extracts O(log n) bits from the sequence per attention head.
Step 3: Depth Amplification. With L = O(1) layers and H heads per layer, total information at any position is

O(L ·H · log n) = O(log n) bits (treating L,H as constants).
Step 4: Intermediate Value Bound. FFN computations involve polynomially many additions and multiplications of

p-bit numbers. By induction on layers:
|h(ℓ)i | ≤ poly(n) ·max

j
|xj | (79)

Since inputs are bounded and depth is constant, intermediate values remain poly(n).

(⇐) Bounded Computation =⇒ Transformer. Suppose f has a solution g depending on O(log n) input bits with
poly(n)-bounded intermediates.

Step 1: Attention Selection. Construct attention patterns that select the O(log n) relevant positions. Hard attention can
select specific positions; soft attention approximates this with O(log n) precision.

Step 2: Computation Simulation. The FFN layers can simulate any polynomial-time computation on O(log n) bits of
input, as FFNs are universal function approximators on bounded domains.

Step 3: Precision Sufficiency. With poly(n) intermediate values and O(log n) precision, all computations can be
represented exactly (up to the precision needed for correct output).

This completes the characterization.

A.2 Proof of Theorem ?? (CoT Complexity Hierarchy)
Theorem (CoT Hierarchy, Restated). The chain-of-thought complexity classes form a strict hierarchy:

TC00 ⊊ CoT(O(1)) ⊊ CoT(O(log n)) ⊆ CoT(O(n)) ⊆ CoT(poly(n)) = P (80)

Proof. We prove each containment and separation.

TC00 ⊆ CoT(O(1)): With O(1) CoT steps, we can simulate O(1) sequential transformer passes. Since transformers
compute TC00 in one pass, O(1) passes compute TC00.

TC00 ⊊ CoT(O(1)): Consider string equality: EQ(x, y) = 1 iff x = y for |x| = |y| = n.
Claim: EQ /∈ TC00.
Proof: By communication complexity lower bounds, any AC00 circuit for EQ requires Ω(n) wires crossing any balanced

partition. Since TC00 ⊆ AC00 for this problem, EQ /∈ TC00.
Claim: EQ ∈ CoT(O(1)).
Proof: With 2 CoT steps: (1) compute h = hash(x), (2) compare h with hash(y). Layer-norm provides a hash function

(Theorem ??).

CoT(O(1)) ⊊ CoT(O(log n)): Consider iterated composition: f (k)(x) = f(f(· · · f(x))) for k = log n iterations.
O(1) CoT steps cannot simulate log n sequential compositions (each step adds constant depth).
O(log n) CoT steps can simulate by writing intermediate f (i)(x) values.

CoT(O(log n)) ⊆ L: Each CoT step produces O(log n) bits (bounded precision). O(log n) steps yield O(log2 n) bits
total, computable in logspace.

CoT(poly(n)) = P: ⊆: poly(n) CoT steps, each polynomial-time, is polynomial time total.
⊇: Any polynomial-time TM can be simulated: write TM configuration at each step (polynomial configurations,

polynomial steps).

34

Smart
Inf

er

Inference-Time Compute Scaling: A Theoretical Survey Anjan Goswami

A.3 Proof of Theorem ?? (Self-Consistency Success Probability)
Theorem (Self-Consistency Success, Restated). For self-consistency with N samples, if the model produces the correct
answer with probability p > 0.5:

P (majority vote correct) ≥ 1− exp
(
−2N(p− 0.5)2

)
(81)

Proof. Let Xi ∈ {0, 1} indicate whether sample i produces the correct answer. Then Xi are i.i.d. Bernoulli(p).
The majority vote is correct iff

∑N
i=1Xi > N/2.

By Hoeffding’s inequality, for any t > 0:

P

(
1

N

N∑
i=1

Xi − p ≤ −t

)
≤ exp(−2Nt2) (82)

Setting t = p− 0.5 (valid since p > 0.5):

P

(
1

N

N∑
i=1

Xi ≤ 0.5

)
= P

(
1

N

N∑
i=1

Xi − p ≤ 0.5− p

)
(83)

≤ exp(−2N(p− 0.5)2) (84)

Therefore:

P (majority correct) = P

(
N∑
i=1

Xi > N/2

)
≥ 1− exp(−2N(p− 0.5)2) (85)

A.4 Proof of Theorem ?? (Best-of-N with Imperfect Verifier)
Theorem (Best-of-N ROC Characterization, Restated). For Best-of-N with a verifier having true positive rate TPR and false
positive rate FPR:

P (correct selected) =
pgen · (1− (1− TPR)N)

pgen · (1− (1− TPR)N) + (1− pgen) · (1− (1− FPR)N)
(86)

If FPR > TPR, then limN→∞ P (correct) = 0.

Proof. Consider the selection process:
Step 1: Highest-Scoring Candidate. The verifier assigns scores. Best-of-N selects the candidate with the highest score.
Step 2: Probability of Correct Being Highest. Let C be the event that at least one correct solution exists and has the

highest score.
For the correct solution to be selected:

• At least one correct solution must be generated (probability 1− (1− pgen)
N)

• That correct solution must score highest

Step 3: Simplified Binary Model. Assume the verifier outputs binary accept/reject with TPR and FPR. A candidate is
“accepted” if it passes the verifier.

P (correct accepted) = TPR P (incorrect accepted) = FPR
Among accepted candidates, select uniformly. The probability that a correct candidate exists and is selected:

P (correct selected) =
E[# correct accepted]
E[# total accepted]

(87)

Step 4: Expected Counts. E[# correct accepted] = N · pgen · TPR E[# incorrect accepted] = N · (1− pgen) · FPR
Step 5: Selection Probability.

P (correct) ≈
pgen · TPR

pgen · TPR + (1− pgen) · FPR
(88)

Step 6: Limit Behavior. As N →∞:

35

Smart
Inf

er

Inference-Time Compute Scaling: A Theoretical Survey Anjan Goswami

• If TPR > FPR: correct solutions are more likely to be accepted, P (correct)→ 1
• If TPR < FPR: incorrect solutions are more likely to be accepted, P (correct)→ 0
• If TPR = FPR: no discrimination, P (correct) = pgen

The exact formula in the theorem accounts for the probability that at least one solution of each type is accepted.

A.5 Proof of Theorem 5.8 (Knockout Exponential Scaling)
Theorem (Knockout Scaling, Restated). Under Assumptions 5.6 and 5.7, the knockout algorithm’s failure probability
satisfies:

P (incorrect) ≤ exp
(
−Ω(min{N · pgen,K · (pwin − 0.5)2})

)
(89)

Proof. The proof proceeds in two parts: (1) a correct solution must exist among candidates, (2) it must survive all rounds.
Part 1: Existence of Correct Candidate. The probability that no correct solution exists among N candidates:

P (no correct) = (1− pgen)
N ≤ exp(−N · pgen) (90)

by the inequality 1− x ≤ e−x.
Part 2: Survival Through Tournament. Consider a correct solution s+ facing an incorrect solution s− in a round. Each

of K comparisons independently favors s+ with probability pwin > 0.5.
By majority vote over K comparisons, s+ wins if > K/2 comparisons favor it. By Hoeffding:

P (s+ loses) ≤ exp(−2K(pwin − 0.5)2) (91)

Part 3: Rounds in Tournament. A knockout tournament with N candidates has ⌈log2N⌉ rounds. A correct solution
must win all rounds it participates in.

By union bound over log2N rounds:

P (s+ eliminated) ≤ log2N · exp(−2K(pwin − 0.5)2) (92)

Part 4: Combined Bound. The algorithm fails if either:

1. No correct solution exists, OR
2. All correct solutions are eliminated

Using union bound and the above:

P (fail) ≤ exp(−N · pgen) + log2N · exp(−2K(pwin − 0.5)2) (93)

≤ exp
(
−Ω(min{N · pgen,K · (pwin − 0.5)2})

)
(94)

for sufficiently large N and K.

A.6 Proof of Theorem 6.8 (Self-Correction Impossibility)
Theorem (Self-Correction Limits, Restated). For reasoning tasks, LLMs cannot reliably improve via intrinsic self-correction,
and performance can degrade.

Proof. We provide a formal argument for why intrinsic self-correction cannot systematically improve performance.
Setup. LetM be an LLM with distribution PM(y|x) over answers y given problem x. Let y∗ be the correct answer.
Initial Response. The initial response y0 ∼ PM(y|x) is correct with probability p = PM(y∗|x).
Self-Correction Step. Intrinsic self-correction generates a critique c and revised answer y1:

c ∼ PM(c|x, y0) (95)
y1 ∼ PM(y|x, y0, c) (96)

Information-Theoretic Argument. The model has access only to (x, y0, c) when generating y1. Crucially:

• x is the same as before
• y0 was generated by the same model
• c is generated by the same model from (x, y0)

36

Smart
Inf

er

Inference-Time Compute Scaling: A Theoretical Survey Anjan Goswami

No new information about y∗ is introduced. The model cannot distinguish whether y0 = y∗ or y0 ̸= y∗ better than its
original uncertainty.

Symmetry Argument. Let A be the event “y0 is correct” and B be the event “y1 is correct.”
If the model could improve, we’d need P (B|Ac) > P (A) (corrections fix errors).
But by symmetry of the model’s uncertainty:

P (model changes correct y0 to incorrect y1) ≈ P (model changes incorrect y0 to correct y1) (97)

The model is equally likely to “correct” a right answer to wrong as vice versa.
Degradation Mechanism. In practice, self-correction can degrade performance because:

1. The critique prompt biases the model toward changing its answer
2. If the original answer was correct, any change is wrong
3. The model may be overconfident in its critique

Formal Condition for Improvement. Self-correction improves iff:

P (y1 = y∗|y0 ̸= y∗) · P (y0 ̸= y∗) > P (y1 ̸= y∗|y0 = y∗) · P (y0 = y∗) (98)

This requires asymmetric error detection, which the model lacks without external feedback.

B. Extended Algorithm Descriptions

37

Smart
Inf

er

Inference-Time Compute Scaling: A Theoretical Survey Anjan Goswami

B.1 Complete MCTS for LLM Reasoning

Algorithm 11 Complete MCTS with LLM (MCTSr)

Require: LLMM, PRM R, problem x, iterations Niter, exploration constant c, rollout depth dmax
1: Initialize root node s0 ← x
2: Children(s0)← ∅, N(s0)← 0, Q(s0)← 0
3: for i = 1 to Niter do
4: // Selection
5: s← s0
6: while s is not terminal and s is fully expanded do
7: s← argmaxs′∈Children(s)

[
Q(s′)
N(s′) + c

√
lnN(s)
N(s′)

]
8: end while
9:

10: // Expansion
11: if s is not terminal and s is not fully expanded then
12: Generate new thought t ∼M(·|s)
13: s′ ← Append(s, t)
14: Add s′ to Children(s)
15: N(s′)← 0, Q(s′)← 0
16: s← s′

17: end if
18:
19: // Evaluation (Rollout or Value Estimate)
20: if using rollouts then
21: Complete solution y ∼M(·|s) greedily up to dmax steps
22: v ← R(x, y) ▷ PRM score of complete solution
23: else
24: v ← R(x, s) ▷ PRM score of partial solution
25: end if
26:
27: // Backpropagation
28: while s ̸= null do
29: N(s)← N(s) + 1
30: Q(s)← Q(s) + v
31: s← Parent(s)
32: end while
33: end for
34:
35: // Final Selection
36: s∗ ← argmaxs∈Children(s0)N(s) ▷ Most visited child
37: return path from s0 to terminal via highest-N children

38

Smart
Inf

er

Inference-Time Compute Scaling: A Theoretical Survey Anjan Goswami

B.2 Diverse Beam Search

Algorithm 12 Diverse Beam Search for LLM Generation

Require: LLMM, prompt x, beam width b, groups G, diversity penalty λ, max length T
1: Initialize Bg ← {x} for each group g ∈ [G] ▷ b/G beams per group
2: for t = 1 to T do
3: for g = 1 to G do
4: Candidatesg ← ∅
5: for each beam y ∈ Bg do
6: for each token w in top-k by PM(w|y) do
7: y′ ← Append(y, w)
8: score(y′)← logPM(y′)− λ

∑
y′′∈Bg

sim(y′, y′′)

9: Add (y′, score(y′)) to Candidatesg
10: end for
11: end for
12: Bg ← top b/G candidates from Candidatesg by score
13: end for
14: end for
15: return

⋃G
g=1Bg

C. Complexity Class Definitions
For completeness, we provide formal definitions of complexity classes used in this survey.

Definition C.1 (TC00). TC00 is the class of languages decidable by constant-depth, polynomial-size circuits with AND,
OR, NOT, and MAJORITY gates. Equivalently, TC00 captures problems solvable by threshold circuits of constant depth.

Definition C.2 (NC1). NC1 is the class of languages decidable by O(log n)-depth, polynomial-size circuits with AND,
OR, NOT gates of fan-in 2. NC1 contains problems like formula evaluation and is contained in L.

Definition C.3 (L (Log-Space)). L is the class of languages decidable by a deterministic Turing machine using O(log n)
bits of work tape (in addition to read-only input and write-only output).

Definition C.4 (P (Polynomial Time)). P is the class of languages decidable by a deterministic Turing machine in polynomial
time.

Definition C.5 (NP (Nondeterministic Polynomial Time)). NP is the class of languages for which membership can be
verified in polynomial time given a polynomial-size certificate.

Definition C.6 (PSPACE). PSPACE is the class of languages decidable by a deterministic Turing machine using
polynomial space.

The standard inclusions are:

TC00 ⊆ NC1 ⊆ L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE (99)

All inclusions except L ⊆ P are believed to be strict, but separations remain open.

Acknowledgments
This survey benefited from the theoretical foundations established by Will Merrill, Ashish Sabharwal, Zhiyuan Li, Emmanuel
Abbe, and their collaborators. Their rigorous complexity-theoretic analysis of transformers provides the backbone for
understanding inference-time compute scaling.

39

Smart
Inf

er

Inference-Time Compute Scaling: A Theoretical Survey Anjan Goswami

References
[1] W. Merrill and A. Sabharwal. The Expressive Power of Transformers with Chain of Thought. In Proceedings of ICLR,

2024.

[2] Z. Li, H. Hong, S. Du, and J. Lee. Chain of Thought Empowers Transformers to Solve Inherently Serial Problems. In
Proceedings of ICLR, 2024.

[3] W. Merrill and A. Sabharwal. The Parallelism Tradeoff: Limitations of Log-Precision Transformers. Transactions of
the Association for Computational Linguistics, 2023.

[4] E. Abbe, S. Bengio, A. Lotfi, and K. Rizk. How Far Can Transformers Reason? The Globality Barrier and Inductive
Scratchpad. In Proceedings of NeurIPS, 2024.

[5] M. Hahn. Theoretical Limitations of Self-Attention in Neural Sequence Models. Transactions of the Association for
Computational Linguistics, 2020.

[6] J. Pérez, J. Barceló, and J. Marinkovic. Attention is Turing Complete. Journal of Machine Learning Research,
22(75):1–35, 2021.

[7] D. Angluin, D. Chiang, and A. Yang. Masked Hard-Attention Transformers and Boolean RASP Recognize Exactly the
Star-Free Languages. In Proceedings of ACL, 2024.

[8] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi, Q. Le, and D. Zhou. Chain-of-Thought Prompting
Elicits Reasoning in Large Language Models. In Proceedings of NeurIPS, 2022.

[9] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa. Large Language Models are Zero-Shot Reasoners. In
Proceedings of NeurIPS, 2022.

[10] X. Wang, J. Wei, D. Schuurmans, Q. Le, E. Chi, S. Narang, A. Chowdhery, and D. Zhou. Self-Consistency Improves
Chain of Thought Reasoning in Language Models. In Proceedings of ICLR, 2023.

[11] S. Yao, D. Yu, J. Zhao, I. Shafran, T. Griffiths, Y. Cao, and K. Narasimhan. Tree of Thoughts: Deliberate Problem
Solving with Large Language Models. In Proceedings of NeurIPS, 2023.

[12] M. Besta, N. Blach, A. Kubicek, R. Gerstenberger, M. Podstawski, L. Gianinazzi, J. Gajda, T. Lehmann, H. Niewiadom-
ski, P. Nyczyk, and T. Hoefler. Graph of Thoughts: Solving Elaborate Problems with Large Language Models. In
Proceedings of AAAI, 2024.

[13] C. Snell, J. Lee, K. Xu, and A. Kumar. Scaling LLM Test-Time Compute Optimally Can Be More Effective than
Scaling Parameters. In Proceedings of ICLR, 2025.

[14] Y. Wu, Z. Sun, S. Li, S. Welleck, and Y. Yang. Inference Scaling Laws: An Empirical Analysis of Compute-Optimal
Inference for Problem-Solving with Language Models. In Proceedings of ICLR, 2025.

[15] Y. Chen, X. Pan, Y. Li, B. Ding, and J. Zhou. Provable Scaling Laws for the Test-Time Compute of Large Language
Models. In Proceedings of NeurIPS, 2025.

[16] J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Rutherford, D. de Las Casas, L. A. Hendricks, J.
Welbl, A. Clark, et al. Training Compute-Optimal Large Language Models. In Proceedings of NeurIPS, 2022.

[17] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Radford, J. Wu, and D. Amodei.
Scaling Laws for Neural Language Models. arXiv preprint arXiv:2001.08361, 2020.

[18] K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J. Tworek, J. Hilton, R. Nakano, C.
Hesse, and J. Schulman. Training Verifiers to Solve Math Word Problems. arXiv preprint arXiv:2110.14168, 2021.

[19] H. Lightman, V. Kosaraju, Y. Burda, H. Edwards, B. Baker, T. Lee, J. Leike, J. Schulman, I. Sutskever, and K. Cobbe.
Let’s Verify Step by Step. In Proceedings of ICLR, 2024.

40

Smart
Inf

er

Inference-Time Compute Scaling: A Theoretical Survey Anjan Goswami

[20] A. Setlur, et al. Rewarding Progress: Scaling Automated Process Verifiers for LLM Reasoning. In Proceedings of ICLR,
2025.

[21] A. Saad-Falcon, et al. Shrinking the Generation-Verification Gap with Weak Verifiers. arXiv preprint arXiv:2506.18203,
2025.

[22] J. Huang, X. Chen, S. Mishra, H. S. Zheng, A. W. Yu, X. Song, and D. Zhou. Large Language Models Cannot
Self-Correct Reasoning Yet. In Proceedings of ICLR, 2024.

[23] Y. Song, H. Zhang, C. Eisenach, S. Kakade, D. Foster, and U. Ghai. Mind the Gap: Examining the Self-Improvement
Capabilities of Large Language Models. In Proceedings of ICLR, 2025.

[24] Z. Gou, Z. Shao, Y. Gong, Y. Shen, Y. Yang, N. Duan, and W. Chen. CRITIC: Large Language Models Can Self-Correct
with Tool-Interactive Critiquing. In Proceedings of ICLR, 2024.

[25] R. Kamoi, et al. When Can LLMs Actually Correct Their Own Mistakes? A Critical Survey of Self-Correction of
LLMs. Transactions of the Association for Computational Linguistics, 2024.

[26] L. Kocsis and C. Szepesvári. Bandit Based Monte-Carlo Planning. In Proceedings of ECML, 2006.

[27] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser, I. Antonoglou, V.
Panneershelvam, M. Lanctot, et al. Mastering the Game of Go with Deep Neural Networks and Tree Search. Nature,
529(7587):484–489, 2016.

[28] D. Zhang, S. Wu, Y. Peng, and K. Q. Weinberger. Accessing GPT-4 Level Mathematical Olympiad Solutions via Monte
Carlo Tree Self-Refine with LLaMA-3 8B. arXiv preprint arXiv:2406.07394, 2024.

[29] S. Hao, Y. Gu, H. Ma, J. J. Hong, Z. Wang, D. Z. Wang, and Z. Hu. Reasoning with Language Model is Planning with
World Model. In Proceedings of EMNLP, 2023.

[30] DeepSeek-AI. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning. arXiv preprint
arXiv:2501.12948, 2025.

[31] OpenAI. Learning to Reason with LLMs. OpenAI Blog, 2024.

[32] Qwen Team. QwQ: Reflect Deeply on the Boundaries of the Unknown. Qwen Blog, 2024.

[33] G. Hinton, O. Vinyals, and J. Dean. Distilling the Knowledge in a Neural Network. arXiv preprint arXiv:1503.02531,
2015.

[34] Y. Li, et al. LLMs Can Easily Learn to Reason from Demonstration. arXiv preprint, 2025.

[35] Y. Deng, et al. Implicit Chain of Thought Reasoning via Knowledge Distillation. In Proceedings of ICLR, 2024.

[36] N. Ho, L. Schmid, and S. Yun. Large Language Models Are Reasoning Teachers. In Proceedings of ACL, 2023.

[37] L. C. Magister, J. Mallinson, J. Adamek, E. Malmi, and A. Severyn. Teaching Small Language Models to Reason. In
Proceedings of ACL, 2023.

[38] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention Is All
You Need. In Proceedings of NeurIPS, 2017.

[39] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell,
et al. Language Models are Few-Shot Learners. In Proceedings of NeurIPS, 2020.

[40] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-Time Analysis of the Multiarmed Bandit Problem. Machine Learning,
47(2):235–256, 2002.

[41] W. Hoeffding. Probability Inequalities for Sums of Bounded Random Variables. Journal of the American Statistical
Association, 58(301):13–30, 1963.

41

Smart
Inf

er

Inference-Time Compute Scaling: A Theoretical Survey Anjan Goswami

[42] K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J. Tworek, J. Hilton, R. Nakano, et al.
Training Verifiers to Solve Math Word Problems. arXiv preprint arXiv:2110.14168, 2021.

[43] D. Hendrycks, C. Burns, S. Kadavath, A. Arora, S. Basart, E. Tang, D. Song, and J. Steinhardt. Measuring Mathematical
Problem Solving with the MATH Dataset. In Proceedings of NeurIPS, 2021.

[44] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Kaplan, H. Edwards, Y. Burda, N. Joseph, G. Brockman,
et al. Evaluating Large Language Models Trained on Code. arXiv preprint arXiv:2107.03374, 2021.

[45] N. Shinn, F. Cassano, A. Gopinath, K. Narasimhan, and S. Yao. Reflexion: Language Agents with Verbal Reinforcement
Learning. In Proceedings of NeurIPS, 2023.

[46] A. Madaan, N. Tandon, P. Gupta, S. Hallinan, L. Gao, S. Wiegreffe, U. Alon, N. Dziri, S. Prabhumoye, Y. Yang, et al.
Self-Refine: Iterative Refinement with Self-Feedback. In Proceedings of NeurIPS, 2023.

[47] S. Welleck, X. Lu, P. West, F. Brahman, T. Shen, D. Khashabi, and Y. Choi. Generating Sequences by Learning to
Self-Correct. In Proceedings of ICLR, 2023.

[48] E. Zelikman, Y. Wu, J. Mu, and N. Goodman. STaR: Bootstrapping Reasoning With Reasoning. In Proceedings of
NeurIPS, 2022.

[49] S. Polu, J. M. Han, K. Zheng, M. Baksys, I. Babuschkin, and I. Sutskever. Formal Mathematics Statement Curriculum
Learning. In Proceedings of ICLR, 2023.

[50] N. Sardana, J. Frankle, and S. Bubeck. Beyond Chinchilla-Optimal: Accounting for Inference in Language Model
Scaling Laws. arXiv preprint arXiv:2401.00448, 2023.

[51] G. Feng, B. Zhang, Y. Gu, H. Ye, D. He, and L. Wang. Towards Revealing the Mystery behind Chain of Thought: A
Theoretical Perspective. In Proceedings of NeurIPS, 2023.

[52] C. Sanford, D. Hsu, and M. Telgarsky. Transformers, Parallel Computation, and Logarithmic Depth. In Proceedings of
ICML, 2024.

[53] L. Strobl, W. Merrill, G. Weiss, D. Chiang, and D. Angluin. What Formal Languages Can Transformers Express? A
Survey. Transactions of the Association for Computational Linguistics, 2024.

[54] C. Yun, S. Bhojanapalli, A. S. Rawat, S. J. Reddi, and S. Kumar. Are Transformers Universal Approximators of
Sequence-to-Sequence Functions? In Proceedings of ICLR, 2020.

[55] J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud, D. Yogatama, M. Bosma, D. Zhou, D. Metzler, et al.
Emergent Abilities of Large Language Models. Transactions on Machine Learning Research, 2022.

[56] R. Schaeffer, B. Miranda, and S. Koyejo. Are Emergent Abilities of Large Language Models a Mirage? In Proceedings
of NeurIPS, 2023.

[57] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen, S. Tavener, D. Perez, S.
Samothrakis, and S. Colton. A Survey of Monte Carlo Tree Search Methods. IEEE Transactions on Computational
Intelligence and AI in Games, 4(1):1–43, 2012.

[58] R. Coulom. Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search. In Proceedings of Computers and
Games, 2006.

[59] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel,
et al. Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm. arXiv preprint
arXiv:1712.01815, 2017.

[60] E. Jones. Scaling Scaling Laws with Board Games. arXiv preprint arXiv:2104.03113, 2021.

[61] J. Uesato, N. Kushman, R. Kumar, F. Song, N. Siegel, L. Wang, A. Creswell, G. Irving, and I. Higgins. Solving Math
Word Problems with Process- and Outcome-Based Feedback. arXiv preprint arXiv:2211.14275, 2022.

42

Smart
Inf

er

Inference-Time Compute Scaling: A Theoretical Survey Anjan Goswami

[62] P. Wang, L. Li, Z. Shao, R. Xu, D. Dai, Y. Li, D. Chen, Y. Wu, and Z. Sui. Math-Shepherd: Verify and Reinforce LLMs
Step-by-step without Human Annotations. In Proceedings of ACL, 2024.

[63] L. Luo, Z. Liu, Z. Huang, B. Zhang, J. Ma, and Y. Tian. Improve Mathematical Reasoning in Language Models by
Automated Process Supervision. arXiv preprint arXiv:2406.06592, 2024.

[64] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray, et al.
Training Language Models to Follow Instructions with Human Feedback. In Proceedings of NeurIPS, 2022.

[65] R. Rafailov, A. Sharma, E. Mitchell, S. Ermon, C. D. Manning, and C. Finn. Direct Preference Optimization: Your
Language Model is Secretly a Reward Model. In Proceedings of NeurIPS, 2023.

[66] A. Havrilla, Y. Du, S. C. Raparthy, C. Nalmpantis, J. Dwivedi-Yu, M. Zhuravinskyi, E. Hambro, S. Sukhbaatar, and R.
Raileanu. Teaching Large Language Models to Reason with Reinforcement Learning. arXiv preprint arXiv:2403.04642,
2024.

[67] A. Kumar, V. Zhuang, R. Agarwal, Y. Su, J. Flick, D. Zhou, G. Gong, A. Dubey, et al. Training Language Models to
Self-Correct via Reinforcement Learning. arXiv preprint arXiv:2409.12917, 2024.

[68] A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi. The Curious Case of Neural Text Degeneration. In Proceedings
of ICLR, 2020.

[69] C. Meister, T. Vieira, and R. Cotterell. If Beam Search is the Answer, What was the Question? In Proceedings of
EMNLP, 2020.

[70] A. K. Vijayakumar, M. Cogswell, R. R. Selvaraju, Q. Sun, S. Lee, D. Crandall, and D. Batra. Diverse Beam Search:
Decoding Diverse Solutions from Neural Sequence Models. In Proceedings of AAAI, 2018.

[71] Y. Xie, K. Kawaguchi, Y. Zhao, J. Zhao, M. Kan, J. He, and Q. Xie. Self-Evaluation Guided Beam Search for Reasoning.
In Proceedings of NeurIPS, 2024.

[72] A. Lewkowycz, A. Andreassen, D. Dohan, E. Dyer, H. Michalewski, V. Ramasesh, A. Slone, C. Anil, I. Schlag, T.
Gutman-Solo, et al. Solving Quantitative Reasoning Problems with Language Models. In Proceedings of NeurIPS,
2022.

[73] Z. Azerbayev, H. Schoelkopf, K. Paster, M. Dos Santos, S. McAleer, A. Q. Jiang, J. Deng, S. Biderman, and S. Welleck.
Llemma: An Open Language Model for Mathematics. In Proceedings of ICLR, 2024.

[74] T. Trinh, Y. Wu, Q. Le, H. He, and T. Luong. Solving Olympiad Geometry without Human Demonstrations. Nature,
625(7995):476–482, 2024.

[75] B. Gao, et al. OmniMATH: A Universal Olympiad Level Mathematic Benchmark For Large Language Models. arXiv
preprint arXiv:2402.01118, 2024.

[76] X. Chen, M. Lin, N. Schärli, and D. Zhou. Teaching Large Language Models to Self-Debug. In Proceedings of ICLR,
2024.

[77] Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond, T. Eccles, J. Keeling, F. Gimeno, A. Dal Lago, et al.
Competition-Level Code Generation with AlphaCode. Science, 378(6624):1092–1097, 2022.

[78] T. Ridnik, et al. Code Generation with AlphaCodium: From Prompt Engineering to Flow Engineering. arXiv preprint
arXiv:2401.08500, 2024.

[79] K. Yang, A. Swope, A. Gu, R. Chalapathy, P. Song, S. Zhai, S. Liber, A. Anand, et al. LeanDojo: Theorem Proving
with Retrieval-Augmented Language Models. In Proceedings of NeurIPS, 2024.

[80] T. Trinh and T. Luong. AlphaGeometry: Solving Olympiad Geometry Without Human Demonstrations. Nature, 2024.

[81] T. Lattimore and C. Szepesvári. Bandit Algorithms. Cambridge University Press, 2020.

[82] S. Bubeck and N. Cesa-Bianchi. Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems.
Foundations and Trends in Machine Learning, 5(1):1–122, 2012.

43

	Introduction
	Motivation and Scope
	Contributions and Organization
	Related Surveys
	Notation and Terminology

	Computational Model
	Transformer Architecture: Formal Definition
	Precision Regimes
	Attention Semantics
	Chain-of-Thought as Computation
	Architectural Variants

	Complexity-Theoretic Foundations
	The TC0 Barrier Without Chain-of-Thought
	The Merrill-Sabharwal Characterization
	Proof Technique: The Layer-Norm Hash
	The Li et al. Circuit Simulation
	Inherently Serial Problems
	Impossibility Results and Lower Bounds
	Communication Complexity Barriers
	Sensitivity and PARITY
	The Globality Barrier

	Summary of Complexity Landscape

	Algorithmic Taxonomy
	Chain-of-Thought: Sequential Deepening
	Self-Consistency: Parallel Sampling with Marginalization
	Best-of-N with Verifiers
	Tree-of-Thoughts: Structured Search
	Monte Carlo Tree Search
	Comparative Analysis

	Scaling Laws
	Empirical Scaling Observations
	Functional Forms of Scaling Laws
	Provable Scaling Laws
	The Knockout Algorithm
	The League Algorithm

	Failure Modes and Limitations
	Compute-Optimal Allocation
	Relationship to Pretraining Scaling Laws

	Verification Theory
	The Generation-Verification Gap
	Verifier Taxonomy
	Process vs. Outcome Reward Models
	Self-Correction: Theoretical Limits
	Verification Complexity
	Ensemble Verification
	Theoretical Framework for Self-Improvement
	Summary: Verification as the Limiting Factor

	Search-Theoretic Foundations
	Search Space Formalization
	Exploration-Exploitation Tradeoff
	Heuristic Quality and Admissibility
	A* Search and Its LLM Variants
	Beam Search Analysis
	Search Algorithm Comparison
	Sample Complexity of Search
	The Search-Verification Tradeoff

	Training-Inference Tradeoffs
	The Compute Allocation Problem
	Distillation of Reasoning
	Adaptive Distillation
	Reinforcement Learning for Reasoning
	Inference-Aware Training
	The Distillation-RL Spectrum
	Theoretical Limits of Distillation

	Open Problems
	High Tractability, High Impact
	Medium Tractability, High Impact
	Low Tractability, High Impact
	Foundational Questions
	Research Directions

	Conclusion
	Summary of Theoretical Contributions
	Practical Implications
	The Road Ahead

	Detailed Proofs
	Proof of the CoT Hierarchy Theorem
	Proof of the Merrill-Sabharwal Characterization (Theorem 3.4)
	Proof of Theorem 5.8: Knockout Exponential Scaling
	Proof of Proposition 4.3: Self-Consistency Success Probability
	Proof of Theorem 4.6: Best-of-N with Imperfect Verifier
	Extended Complexity Analysis
	Detailed CoT Complexity Bounds
	Attention Complexity
	Additional Algorithms
	Weighted Majority with Confidence
	Iterative Refinement with Verification

	Empirical Scaling Data
	Benchmark Results Summary

	Worked Examples
	Example: Self-Consistency on Arithmetic
	Example: Best-of-N with Verifier
	Example: Knockout Tournament
	Example: MCTS for Mathematical Reasoning

	Implementation Considerations
	Efficient Parallel Sampling
	Caching Strategies for Tree Search
	Verifier Deployment

	Detailed Proofs
	Proof of Theorem ?? (Merrill-Sabharwal Characterization)
	Proof of Theorem ?? (CoT Complexity Hierarchy)
	Proof of Theorem ?? (Self-Consistency Success Probability)
	Proof of Theorem ?? (Best-of-N with Imperfect Verifier)
	Proof of Theorem 5.8 (Knockout Exponential Scaling)
	Proof of Theorem 6.8 (Self-Correction Impossibility)
	Extended Algorithm Descriptions
	Complete MCTS for LLM Reasoning
	Diverse Beam Search
	Complexity Class Definitions

